
Boost.ScopeExit
Alexander Nasonov
Copyright © 2006 -2009 Alexander Nasonov

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at ht-
tp://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Introduction .. 1
Tutorial .. 1
Alternatives .. 3
Supported Compilers .. 6
Configuration .. 7
Reference ... 7
Acknowledge .. 8

Introduction
Nowadays, every C++ developer is familiar with RAII technique. It binds resource acquisition and release to initialization and de-
struction of a variable that holds the resource. But there are times when writing a special class for such variable is not worth the effort.

This is when ScopeExit macro comes into play. You put resource acquisition directly in your code and next to it you write a code
that releases the resource.

Read Tutorial to find out how to write programs with ScopeExit or jump straight to the Reference section.

Tutorial
Imagine that you want to make many modifications to data members of the World class in the World::addPerson function. You
start with adding a new Person object to a vector of persons:

void World::addPerson(Person const& person) {
bool commit = false;

 m_persons.push_back(person); // (1) direct action

Some operation down the road may throw an exception and all changes to involved objects should be rolled back. This all-or-nothing
semantic is also known as strong guarantee.

In particular, last added person must be deleted from m_persons when the function throws. All you need is to define a delayed action
(release of a resource) right after the direct action (resource acquisition):

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.research.att.com/~bs/glossary.html#Gresource-acquisition-is-initialization
http://www.research.att.com/~bs/glossary.html#Gstrong-guarantee
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void World::addPerson(Person const& aPerson) {
bool commit = false;

 m_persons.push_back(aPerson); // (1) direct action
 BOOST_SCOPE_EXIT((&commit)(&m_persons))

{
if(!commit)

 m_persons.pop_back(); // (2) rollback action
} BOOST_SCOPE_EXIT_END

// ... // (3) other operations

 commit = true; // (4) turn all rollback actions into no-op
}

The block below point (1) is a ScopeExit declaration. Unlike point (1), an execution of the ScopeExit body will be delayed until
the end of the current scope. In this case it will be executed either after point (4) or on any exception.

The ScopeExit declaration starts with BOOST_SCOPE_EXIT macro invocation which accepts Boost.Preprocessor sequence of captured
variables. If a capture starts with the ampersand sign &, a reference to the captured variable will be available inside the ScopeExit
body; otherwise, a copy of the variable will be made after the point (1) and only the copy will be available inside the body.

In the example above, variables commit and m_persons are passed by reference because the final value of the commit variable
should be used to determine whether to execute rollback action or not and the action should modify the m_persons object, not its
copy. This is a most common case but passing a variable by value is sometimes useful as well.

Consider a more complex case where World::addPerson can save intermediate states at some points and roll back to the last saved
state. You can use Person::m_evolution to store a version of changes and increment it to cancel all rollback actions associated
with those changes.

If you pass a current value of m_evolution stored in the checkpoint variable by value, it will remain unchanged until the end of
aa scope and you can compare it with the final value of the m_evolution. If the latter wasn't incremented since you saved it, the
rollback action inside the block should be executed:

2

Boost.ScopeExit

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/preprocessor/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void World::addPerson(Person const& aPerson) {
 m_persons.push_back(aPerson);

// This block must be no-throw
 Person& person = m_persons.back();
 Person::evolution_t checkpoint = person.m_evolution;

 BOOST_SCOPE_EXIT((checkpoint)(&person)(&m_persons))
{

if(checkpoint == person.m_evolution)
 m_persons.pop_back();

} BOOST_SCOPE_EXIT_END

// ...

 checkpoint = ++person.m_evolution;

// Assign new id to the person
 World::id_t const prev_id = person.m_id;
 person.m_id = m_next_id++;
 BOOST_SCOPE_EXIT((checkpoint)(&person)(&m_next_id)(prev_id))

{
if(checkpoint == person.m_evolution) {

 m_next_id = person.m_id;
 person.m_id = prev_id;

}
} BOOST_SCOPE_EXIT_END

// ...

 checkpoint = ++person.m_evolution;
}

Full code listing can be found in world.cpp.

Alternatives
try-catch

This is an example of using a badly designed File class. An instance of File doesn't close a file in a destructor, a programmer is
expected to call the close member function explicitly.

File passwd;
try {
 passwd.open("/etc/passwd");

// ...
 passwd.close();
}
catch(...) {
 log("could not get user info");

if(passwd.is_open())
 passwd.close();

throw;
}

Note the following:

• the passwd object is defined outside of the try block because this object is required inside the catch block to close the file,

• the passwd object is not fully constructed until after the open member function returns, and

3

Boost.ScopeExit

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../example/world.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• if opening throws, the passwd.close() should not be called, hence the call to passwd.is_open().

ScopeExit doesn't have any of these problems:

try {
 File passwd("/etc/passwd");
 BOOST_SCOPE_EXIT((&passwd)) {
 passwd.close();

} BOOST_SCOPE_EXIT_END
// ...

}
catch(...) {
 log("could not get user info");

throw;
}

RAII

RAII is absolutely perfect for the File class introduced above. Use of a properly designed File class would look like:

try {
 File passwd("/etc/passwd");

// ...
}
catch(...) {
 log("could not get user info");

throw;
}

However, using RAII to build up a strong guarantee could introduce a lot of non-reusable RAII types. For example:

m_persons.push_back(person);
pop_back_if_not_commit pop_back_if_not_commit_guard(commit, m_persons);

The pop_back_if_not_commit class is either defined out of the scope or as a local class:

class pop_back_if_not_commit {
bool m_commit;

 std::vector<Person>& m_vec;
// ...
~pop_back_if_not_commit() {

if(!m_commit)
 m_vec.pop_back();

}
};

In some cases strong guarantee can be accomplished with standard utilities:

std::auto_ptr<Person> spSuperMan(new Superman);
m_persons.push_back(spSuperMan.get());
spSuperMan.release(); // m_persons successfully took ownership.

or with specialized containers such as Boost Pointer Container Library or Boost Multi-Index Containers Library.

ScopeGuard

Imagine that you add a new currency rate:

4

Boost.ScopeExit

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.research.att.com/~bs/glossary.html#Gresource-acquisition-is-initialization
http://www.research.att.com/~bs/glossary.html#Gresource-acquisition-is-initialization
http://www.research.att.com/~bs/glossary.html#Gstrong-guarantee
http://www.research.att.com/~bs/glossary.html#Gresource-acquisition-is-initialization
http://www.research.att.com/~bs/glossary.html#Gstrong-guarantee
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/ptr_container/doc/ptr_container.html
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/multi_index/doc/index.html
http://www.ddj.com/dept/cpp/184403758
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool commit = false;
std::string currency("EUR");
double rate = 1.3326;
std::map<std::string, double> rates;
bool currency_rate_inserted =
 rates.insert(std::make_pair(currency, rate)).second;

and then continue a transaction. If it cannot be completed, you erase the currency from rates. This is how you can do this with
ScopeGuard and Boost.Lambda:

using namespace boost::lambda;

ON_BLOCK_EXIT(
 if_(currency_rate_inserted && !_1) [
 bind(

static_cast<
 ↵
 std::map<std::string,double>::size_type (std::map<std::string,double>::*)(std::string const&)

>(&std::map<std::string,double>::erase)
, &rates
, currency
)

]
, boost::cref(commit)
);

// ...

commit = true;

Note that

• Boost.lambda expressions are hard to write correctly, for example, overloaded function must be explicitly casted, as demonstrated
in this example,

• condition in if_ expression refers to commit variable indirectly through the _1 placeholder,

• setting a breakpoint inside if_[...] requires in-depth knowledge of Boost.Lambda and debugging techniques.

This code will look much better with native lambda expressions proposed for C++0x:

ON_BLOCK_EXIT(
[currency_rate_inserted, &commit, &rates, ¤cy]() -> void
{

if(currency_rate_inserted && !commit)
 rates.erase(currency);

}
);

With ScopeExit you can simply do

5

Boost.ScopeExit

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.ddj.com/dept/cpp/184403758
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/lambda/index.html
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/lambda/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

BOOST_SCOPE_EXIT((currency_rate_inserted)(&commit)(&rates)(¤cy))
{

if(currency_rate_inserted && !commit)
 rates.erase(currency);
} BOOST_SCOPE_EXIT_END

// ...

commit = true;

C++0x

In future releases ScopeExit will take advantages of C++0x features.

• Passing capture list as Boost.Preprocessor sequence will be replaced with a traditional macro invocation style:

BOOST_SCOPE_EXIT(currency_rate_inserted, &commit, &rates, ¤cy)
{

if(currency_rate_inserted && !commit)
 rates.erase(currency);
} BOOST_SCOPE_EXIT_END

• BOOST_SCOPE_EXIT_END will be replaced with a semicolon:

BOOST_SCOPE_EXIT(currency_rate_inserted, &commit, &rates, ¤cy)
{

if(currency_rate_inserted && !commit)
 rates.erase(currency);
};

• Users will be able to capture local variables implicitly with lambda capture defaults & and =:

BOOST_SCOPE_EXIT(&, currency_rate_inserted)
{

if(currency_rate_inserted && !commit)
 rates.erase(currency);
};

• It will be possible to capture this pointer.

The D Programming Language

ScopeExit is similar to scope(exit) feature built into the D programming language.

A curious reader may notice that the library doesn't implement scope(success) and scope(failure) of the D language. Unfor-
tunately, it's not possible in C++ because failure or success condition cannot be determined by calling std::uncaught_exception.
It's not a big problem, though. These two constructs can be expressed in terms of scope(exit) and a bool commit variable as explained
in Tutorial. Refer to Guru of the Week #47 for more details about std::uncaught_exception and if it has any good use at all.

Supported Compilers
The library should be usable on any compiler that supports Boost.Typeof except

• MSVC 7.1 and 8.0 fail to link if a function with ScopeExit is included by multiple translation units.

• GCC 3.3 can't compile ScopeExit inside a template. See this thread for more details.

6

Boost.ScopeExit

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/preprocessor/index.html
http://www.digitalmars.com/d/2.0/statement.html#ScopeGuardStatement
http://www.digitalmars.com/d/index.html
http://www.digitalmars.com/d/index.html
http://www.digitalmars.com/d/2.0/statement.html#ScopeGuardStatement
http://www.gotw.ca/gotw/047.htm
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/typeof/index.html
http://lists.boost.org/Archives/boost/2007/02/116235.php
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The author tested the library on GCC 3.3, 3.4, 4.1, 4.2 and Intel 10.1.

Configuration
Normally, no configuration is required for the library but note that the library depends on Boost.Typeof and you may want to configure
or enforce typeof emulation.

Reference
BOOST_SCOPE_EXIT

A ScopeExit declaration has the following synopsis:

#include <boost/scope_exit.hpp>

BOOST_SCOPE_EXIT (scope-exit-capture-list)
 function-body
BOOST_SCOPE_EXIT_END

where

scope-exit-capture-list:
(scope-exit-capture)

 scope-exit-capture-list (scope-exit-capture)

scope-exit-capture:
 identifier

&identifier

The ScopeExit declaration schedules an execution of scope-exit-body at the end of the current scope. The scope-exit-body
statements are executed in the reverse order of ScopeExit declarations in the given scope. The scope must be local.

Each identifier in scope-exit-capture-list must be a valid name in enclosing scope and it must appear exactly once in
the list. If a scope-exit-capture starts with the ampersand sign &, the corresponding identifier will be available inside
scope-exit-body; otherwise, a copy of it will be made at the point of ScopeExit declaration and that copy will be available inside
scope-exit-body. In the latter case, the idenitifer must be CopyConstructible.

Only identifiers listed in scope-exit-capture-list, static variables, extern variables and functions, and enumerations from
the enclosing scope can be used inside the scope-exit-body.

Note

this pointer is not an identifier and cannot be passed to scope-exit-capture-list.

The ScopeExit uses Boost.Typeof to determine types of scope-exit-capture-list elements. In order to compile code in typeof
emulation mode, all types should be registered with BOOST_TYPEOF_REGISTER_TYPE or BOOST_TYPEOF_REGISTER_TEM-
PLATE macros, or appropriate Boost.Typeof headers should be included.

BOOST_SCOPE_EXIT_TPL

This macro is a workaround for various versions of gcc. These compilers don't compile ScopeExit declaration inside function templates.
As a workaround, the _TPL suffix should be appended to BOOST_SCOPE_EXIT.

The problem boils down to the following code:

7

Boost.ScopeExit

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/typeof/index.html
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/typeof/index.html
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/typeof/index.html
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/typeof/index.html
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/typeof/index.html
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../doc/html/typeof/refe.html#typeof.regtype
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../doc/html/typeof/refe.html#typeof.regtemp
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../doc/html/typeof/refe.html#typeof.regtemp
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/typeof/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<class T> void foo(T const& t) {
int i = 0;
struct Local {

typedef __typeof__(i) typeof_i;
typedef __typeof__(t) typeof_t;

};
typedef Local::typeof_i i_type;
typedef Local::typeof_t t_type;

}

int main() { foo(0); }

This can be fixed by adding typename in front of Local::typeof_i and Local::typeof_t.

See also GCC bug 37920.

Note

Although BOOST_SCOPE_EXIT_TPL has the same suffix as the BOOST_TYPEOF_TPL, it doesn't follow a convention
of the Boost.Typeof.

Acknowledge
(in chronological order)

Maxim Yegorushkin for sending me a code where he used a local struct to clean up resources.

Andrei Alexandrescu for pointing me to scope(exit) construct of the D programming language.

Pavel Vozenilek and Maxim Yanchenko for reviews of early drafts of the library.

Steven Watanabe for his valuable ideas.

Jody Hagins for good comments that helped to significantly improve the documentation.

Richard Webb for testing the library on MSVC compiler.

8

Boost.ScopeExit

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=37920
http://www.boost.org/doc/libs/release/libs/scope_exit/doc/html/../../../../libs/typeof/index.html
http://www.digitalmars.com/d/2.0/statement.html#ScopeGuardStatement
http://www.digitalmars.com/d/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.ScopeExit
	Table of Contents
	Introduction
	Tutorial
	Alternatives
	Supported Compilers
	Configuration
	Reference
	Acknowledge

