rende

r

Thread

Anthony Williams
Copyright © 2007 -8 Anthony Williams

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1 0.txt)

Table of Contents

(O Y o PP 3
Changes SINCE DOOSE L.40 euniit ettt et e e e et ettt et oottt e ettt ettt e et et e e et e et an e e e e e et e e e e ean s 3
R CE T Y T Vo T T | PP 4
(O] T3 A 1 =Y Vo TP 8
(D) =10 | O] 1 {0 Tod (o] PPN 9

Y o)V o] g 1 U Tox (o] S TP RTPPPIN 9
MOVE ASSIGNMENT OPEIALOL ... ittt ettt e e e ettt e et ettt e et e e et e e ettt e et e e e bt e e e et e e et e e et aaeenaes 9

I =T (o B Oa] 1S (Tl (o] PRSPPI 9
Thread ConsStructor With argUMENTScouu i e ettt e e e et e et e eanaaees 10
BT (o B LT £ U Tod (o TP 10
Member FUNCHION j 01 NADI B() 1.uiiviii i e e e e e e e e st e et e et et e e e e aaees 10
MEMDBEN FUNCLION [00 M) oruiitiiiii et e e e e e e e e e e e et et e et e st e et e et e et e st et e e aaeees 10
Member TUNCLION 1 MBA_J 0F N() tivniiiiiiii e e e e e e e e e et e et e et e et e e e e e et e et eaaees 10

Y T aa oL g (Vg Tod (o] g e =Y =Vl o T (PR 11

Y T aal ot g (Vg Tod (o] g e =Y A o [PPN 11
MEMDBEr FUNCLION I N I T UPE () ivtiiiieii ettt e et et e e e e e e e e e e e e e e e et e et e et e et e e et e et e st e e e e eneees 11
Static member fuNCtion har dWAr € _CONCUI T BNCY () wuuirriiiniiiieiiiei et et e e e e e e e e e e e et ea e ateeaaeeanes 11
Member fuNCtion Nat i VE_NANAl (1) ..ovuiiiiiiiiiii e e e e e 12

(oY Y=Y oY P 12

(oY =YY oY P 12
Static MEMDET TUNCLION SI EEP() wvuiiriiiiiii et e e e e e et e e e e e e e et e et e et e et e aaaeanes 12
Static MEMDBEr TUNCLION Vi €1 A1) .vuiiriiiiii et e e e e e e e et e et e a e a e aaeeanes 12
MEMDBDEN FUNCLION SWAP () +vuiittiiiiiii ittt e et e e e e e e e e e s et e e e e e et e et e et e et r et e et e st e eaeeneees 12
NON-MEMDEr FUNCLION SWAP () +.ittiiiiitii ittt e e e e e e e e et e et e et e e et e e e et e et e et e et aaaaaas 13
NON-MEMDBET FUNCLION MOV E () .uiitiiiii i e e e e e e e e e et et e e e e e e e e et e et e et aaaaas 13

(O] P T Yo Yo 1y bR A 4 T =Y To FE o O 13

N EE Tt oFo tol e o T Y T =Y U TP 15
NON-MEMDBEr TUNCLION QBT T 0] woviiriiiiii ettt e e e e e e e e e e et e et e et e et e ra e aneeens 15
Non-member function i Nt er r UPti ON_POi NE () oevriiiiiie e e e e r e a e e e eaes 15
Non-member function i Nt er rupt i ON_F eqUEST () ..ivvniiriiiiii e e e e ees 15
Non-member function i nt er rupti on_enabl ()iiviiiiiii e 16
NON-MEMDEE TUNCLION ST P () ovrriiiiiii ittt e e e e e e e e e e e e et e et e et e et eraeeaans 16
NON-MEMDBEF FUNCLION Yi €1 G() ovvniitiiiiii e e e e e e e e e e e e e e e e e et e et e et e et e raeeanns 16

(O P R TRT=Y o] I =T 0L A=Y o VT o 4 o o PP 17

(O F T oY =Y B 0 LAY o U1 o A o o PP 18
Non-member function template at _t hr @ad_eXi T () eeeuereuiiiiiii e e 18

(O PR A T =T= o Je oYU o J PP 19
LOf0] 11140 [od (o] S PP PTUPTTPTRIN 19
(D= {1 (o1 (o] S TP 19
Member fUNCLION Creat @ thr @AU() ..ivviiriiiiiii ettt e e e s e e et e e e e e aeees 19

Y CeTaa oL g (Vg ot o] g =Yoo IR A o L= Vo [() T TP 20
Member fUNCLION I @MDVE_t N EAA() +.ivviiiiiiiii et e e e e e e s e e e et e e e e e e aeees 20
MeMDBEr FUNCHION J 01 N_AI T () touiiiiiiie e ettt e e e e et e e e e e st e et e et et e e e e e e eaaees 20
Member FUNCHION i NT @I TUPE A1 1 () rerriiiii ettt e e e e e e e e s e et e et et e e e e aaees 20

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

[T oL 0T o 1o IRy =Y () TR 20

RS 0103 11 (0] T4 L1 o] o P 20
YT g Ofe g (o] o] £ TP PP PR PRI 20
[0 Tod 1= Lo I TN O o] 01T o PP 21

LR =T [o Yo =T o Il o[- | PP 21

Shar @dL0CKaD] & CONCEPL ...ttt e et e 22

UPGr adeLoCKabl € CONCEPL .. vuiiiiei e e e e e e 23

[Tod N 1Y 01 PP 24
(08 F S (=1 0] o] 1 I o Yo o TV = Y P 24

(08 F S T] o] T T U L= Y o o] S PP 26

(08 F SR T] o] F IR P U =Yo I oY1 <P 29

(08 F T T 1] o] P L T oo T Lo L=V I o o1 PP 32
Class template upgrade_t 0 _UNi QUE_| OCK .uuueiiueiiiieii e e e e e e e e e e e e e e e e e s e et e et e e st e e aanaeees 33
MutexX-SPecCific Class SCOPEA_ L TY | OCK ..uiiuiiiiii et e e e e e e e e eeees 34

0ot S 11 Tex 1T T PP 34
Non-member function | ock(Lockabl €1, LOCKaDl €2, ...) tiiiiiiiiiiiiii e e e e 34
Non-member function | 0CK(Degi N, BNA) ..uiiiiiii e e e e e e 35
Non-member function t ry_| ock(Lockabl €1, LOCKabl €2, ...) .iiiiiiiiiiieiiii e e 35
Non-member function try 1 oCk(begi N, @NA) ..o 35

Y LT3 G 1Y/ 02 P 36
(O LT D= PP 36
Q1= (= A 21V A= P 37

(O R (=0 11V =) TP 37

(O F e T T AT 110 A= TP 38
Q1= (o T o IRV TN O VN 1V L O =D P 38

(O N T T IR IR A N 1100 B £V S=0 TP 39

(O R - U=Te B 11V =) TS 40

LOTo a0 L1 o g T o] PP 40
(O oY oY o Lo [W e M2 L A= < I =TS 42
Class condi ti ON_VAri @Dl € _BNY ...iiuiiiiiieiii e e e e e e e e e e e 45
Y7o 1=To (=] oo o o [A o Yo TP 47

(0] T T I LT LU 12 14T o PP 47
QY7o 1=To (=] e aToT YR =V TP 47
NON-MEMDBEr TUNCLION CAl | ONMCE .ttt e et e e e aees 48
21 T £ T PR 48
(08 TSI o = Y G T =Y 48
FUBUTES ettt ettt ettt ettt ettt ens 49
L@ YT T PP 49
Creating aSYNCRIONOUS VAIUESiiiiiiii e e e e e e e e e e e e e et e e et e et e et e e et e eaaneees 49

Wait Callbacks and LAzZY FULUIESciiiiii e e e e e e e e e et e et e e e e e et eeaaeeaan s 50
FULUIES RETEIENCE ... ettt et ettt e et e et et et et r e e et e e eanaeees 51
BT (o I Lo T] (o - (- PP 65
(O F S TR =Y: Vo Y o Tl IR T T o1 S ST 66
R =TT I LT R A o <L (O TR 66
explicit thread_specific_ptr(void (*cleanup_function)(T*)); .iiviiiiiiiiiiiiiiaa 66

A TRCT: Co I o =Y od I ol o) A o () PP PPPR 66

L 1 0 T e 14 13 S U PP PPTR PPN 67

LG o] LT oY e (T o1 o1 4 1= APPSR 67

L] =T Lo T gl () TR oo 1 1] S PP 67

VOI 0 1 eSEt (T* NEW VAl UEBT0) | tiiitiiiiiiiitiiii ettt ettt ettt et et e et e n e r e e e e naae 67

L =1 I= Y- T =T (O PP PP 67

(D T I T Lol T [V LT (=T 1T) PPN 67
177 L= (= S V2T A= 0 I A 11T 68
Non-member FUNCLION get _SYST M LT MB(1) tuuuiiiiiiiiie et e e e e e e e e e e e e e e et e et e e et e e ra e e aanaeaanaas 68
Aot 41011 =T o o 01T) £ PP 68

2

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Overview

Boost.Thread enables the use of multiple threads of execution with shared data in portable C++ code. It provides classes and functions
for managing the threads themselves, along with others for synchronizing data between the threads or providing separate copies of

The Boost.Thread library was originally written and designed by William E. Kempf. This version is a major rewrite designed to

data specific to individual threads.
closely follow the proposals presented to the C++ Standards Committee, in particular N2497, N2320, N2184, N2139, and N2094
In order to use the classes and functions described here, you can either include the specific headers specified by the descriptions of

each class or function, or include the master thread library header:

which includes all the other headers in turn.
Changes since boost 1.40

#i ncl ude <boost/thread. hpp>
The 1.41.0 release of Boost adds futures to the thread library. There are also a few minor changes.

Changes since boost 1.35

The 1.36.0 release of Boost includes a few new features in the thread library:
Rvalue reference support for move semantics where the compilers supports it.
A few bugs fixed and missing functions added (including the serious win32 condition variable bug).

New generic | ock() andtry_l ock() functions for locking multiple mutexes at once.

scoped_t ry_| ock types are now backwards-compatible with Boost 1.34.0 and previous releases.
Backwards-compatibility overloads added for t i med_| ock and t i ned_wai t functions to allow use of xt i me for timeouts.

Support for passing function arguments to the thread function by supplying additional arguments to the boost : : t hr ead con-
only work with

structor.

Changes since boost 1.34
and will

optimization,

an

Almost every line of code in Boost.Thread has been changed since the 1.34 release of boost. However, most of the interface changes
Condition variables can now be used with any type that implements the Lockabl e concept, through the use of boost : : condi -
tion_variabl e_any (boost:: conditionisatypedef to boost::condition_variabl e_any, provided for backwards

have been extensions, so the new code is largely backwards-compatible with the old code. The new features and breaking changes

provided as

are described below.
Instances of boost : : t hr ead and of the various lock types are now movable.

New Features
Threads can be interrupted at interruption points.
is

httpo://www.renderx.com/

compatibility). boost::condition_variable
boost : : uni que_| ock<boost : : nut ex> (boost : : mut ex: : scoped_| ock).

Thread IDs are separated from boost : : t hr ead, so a thread can obtain it's own ID (using boost : : t hi s_t hread: : get _i d()),
and IDs can be used as keys in associative containers, as they have the full set of comparison operators.

render

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2497.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2320.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2139.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Timeouts are now implemented using the Boost DateTime library, through a typedef boost : : syst em t i me for absolute timeouts,
and with support for relative timeouts in many cases. boost : : xt i ne is supported for backwards compatibility only.

Locks are implemented as publicly accessible templates boost : : | ock_guar d, boost : : uni que_| ock, boost : : shared_| ock,
and boost : : upgr ade_I ock, which are templated on the type of the mutex. The Lockabl e concept has been extended to include

publicly available | ock() and unl ock() member functions, which are used by the lock types.

Breaking Changes

The list below should cover all changes to the public interface which break backwards compatibility.
longer work, as this has been removed, as it is no longer necessary now that mutex types now have public | ock() and unl ock()

boost : : try_nut ex has been removed, and the functionality subsumed into boost : : mut ex. boost: : try_nut ex is left as a
boost::recursive_try_mutex has been removed, and the functionality subsumed into boost:: recursive_mut ex.

t ypedef , but is no longer a separate class.

scoped_| ock constructors with a second parameter of type bool are no longer provided. With previous boost releases,

boost::recursive_try_mutex isleftasatypedef, butis no longer a separate class.
boost::detail::thread::|ock_ops has been removed. Code that relies on the | ock_ops implementation detail will no

member functions.
boost: : mut ex: : scoped_| ock sone_| ock(sone_nutex, fal se);
could be used to create a lock object that was associated with a mutex, but did not lock it on construction. This facility has now

been replaced with the constructor that takes a boost : : def er _| ock_t ype as the second parameter:
boost: : mut ex: : scoped_| ock sone_| ock(sone_nut ex, boost : : def er _I ock) ;
The | ocked() member function of the scoped_| ock types has been renamed to owns_| ock() .
You can no longer obtain a boost : : t hr ead instance representing the current thread: a default-constructed boost : : t hr ead
object is not associated with any thread. The only use for such a thread object was to support the comparison operators: this
functionality has been moved to boost : : t hread: : i d.

The broken boost : : read_wri t e_nut ex has been replaced with boost : : shar ed_mut ex.
boost : : nut ex is now never recursive. For Boost releases prior to 1.35 boost : : mut ex was recursive on Windows and not on

When using a boost : : recur si ve_nut ex with a call to boost : : condi ti on_vari abl e_any: : wai t (), the mutex is only

unlocked one level, and not completely. This prior behaviour was not guaranteed and did not feature in the tests.

Synopsis

type boost : : t hr ead are not copyable.

POSIX platforms.
The boost : : t hr ead class is responsible for launching and managing threads. Each boost : : t hr ead object represents a single
httpo://www.renderx.com/

Thread Management
thread of execution, or Not-a-Thread, and at most one boost : : t hr ead object represents a given thread of execution: objects of

Obijects of type boost : : t hr ead are movable, however, so they can be stored in move-aware containers, and returned from functions.

This allows the details of thread creation to be wrapped in a function.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

boost: :thread nake_thread();

void f()
{

boost: :thread sone_t hread=nmake_t hread();
some_t hread. join();

[Note: On compilers that support rvalue references, boost : : t hr ead provides a proper move constructor and move-assignment
operator, and therefore meets the C++0x MoveConstructible and MoveAssignable concepts. With such compilers, boost : : t hr ead
can therefore be used with containers that support those concepts.

For other compilers, move support is provided with a move emulation layer, so containers must explicitly detect that move emulation
layer. See <boost/thread/detail/move.hpp> for details.]

Launching threads

A new thread is launched by passing an object of a callable type that can be invoked with no parameters to the constructor. The object
is then copied into internal storage, and invoked on the newly-created thread of execution. If the object must not (or cannot) be
copied, thenboost : : r ef can be used to pass in a reference to the function object. In this case, the user of Boost.Thread must ensure
that the referred-to object outlives the newly-created thread of execution.

struct callable

{
b

void operator()();

boost::thread copies_are_safe()

call abl e x;

return boost::thread(x);
} /Il x is destroyed, but the newly-created thread has a copy, so this is K
boost: :thread oops()

call abl e x;

return boost::thread(boost::ref(x));

} /Il x is destroyed, but the newl y-created thread still has a reference
/1 this |eads to undefined behaviour

If you wish to construct an instance of boost : : t hr ead with a function or callable object that requires arguments to be supplied,
this can be done by passing additional arguments to the boost : : t hr ead constructor:

void find_the_question(int the_answer);

boost: :thread deep_t hought _2(find_the_question, 42);

The arguments are copied into the internal thread structure: if a reference is required, use boost : : r ef, just as for references to
callable functions.

There is an unspecified limit on the number of additional arguments that can be passed.
Exceptions in thread functions

If the function or callable object passed to the boost : : t hr ead constructor propagates an exception when invoked that is not of
type boost : :thread_i nterrupted,std::ternm nate() iscalled.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Joining and detaching

When the boost : : t hr ead object that represents a thread of execution is destroyed the thread becomes detached. Once a thread is
detached, it will continue executing until the invocation of the function or callable object supplied on construction has completed,
or the program is terminated. A thread can also be detached by explicitly invoking the det ach() member function on the
boost : : t hr ead object. In this case, the boost : : t hr ead object ceases to represent the now-detached thread, and instead represents
Not-a-Thread.

In order to wait for a thread of execution to finish, the j oi n() orti med_j oi n() member functions of the boost : : t hr ead object
must be used. j oi n() will block the calling thread until the thread represented by the boost : : t hr ead object has completed. If the
thread of execution represented by the boost : : t hr ead object has already completed, or the boost : : t hr ead object represents
Not-a-Thread, then j oi n() returns immediately. t i med_j oi n() is similar, except thata call to ti ned_j oi n() will also return if
the thread being waited for does not complete when the specified time has elapsed.

Interruption

A running thread can be interrupted by invoking the i nt er r upt () member function of the corresponding boost : : t hr ead object.
When the interrupted thread next executes one of the specified interruption points (or if it is currently blocked whilst executing one)
with interruption enabled, then a boost : : t hr ead_i nt er r upt ed exception will be thrown in the interrupted thread. If not caught,
this will cause the execution of the interrupted thread to terminate. As with any other exception, the stack will be unwound, and de-
structors for objects of automatic storage duration will be executed.

If a thread wishes to avoid being interrupted, it can create an instance of boost: :this_t hread: : di sabl e_i nterrupti on.
Objects of this class disable interruption for the thread that created them on construction, and restore the interruption state to whatever
it was before on destruction:

void f()
{

/1 interruption enabled here

{
boost: :this_thread::disable_interruption di;
/1 interruption disabled

{
boost: :this_thread::disable_interruption di2;
/1 interruption still disabled
} I/ di 2 destroyed, interruption state restored
/1 interruption still disabled

} I/ di destroyed, interruption state restored
/1 interruption now enabl ed

The effects of an instance of boost : : t hi s_t hread: : di sabl e_i nt errupti on can be temporarily reversed by constructing an
instance of boost : : this_thread: : restore_i nterruption,passingintheboost::this_thread::disable_interruption
object in question. This will restore the interruption state to what it was when the boost : : t hi s_t hread: : di sabl e_i nterrupti on
object was constructed, and then disable interruption again when the boost: : t hi s_t hread: : rest ore_i nterrupti on object
is destroyed.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

void g()
{

/1 interruption enabled here

{

boost::this_thread::disable_interruption di
/'l interruption disabled

{

boost::this_thread::restore_interruption ri(di)
/'l interruption now enabl ed
} I/ ri destroyed, interruption disable again
} I/ di destroyed, interruption state restored
/'l interruption now enabl ed

At any point, the interruption state for the current thread can be queried by calling boost: : thi s_thread: :i nterruption_en-
abl ed() .

Predefined Interruption Points

The following functions are interruption points, which will throw boost : : t hr ead_i nt er r upt ed if interruption is enabled for
the current thread, and interruption is requested for the current thread:

* boost::thread::join()

* boost::thread::tined_join()

* boost::condition_variable::wait()

* boost::condition_variable::tined wait()

* boost::condition_variable_any::wait()

* boost::condition_variable_any::timed_wait()
* boost::thread::sleep()

* boost::this_thread::sleep()

* boost::this_thread::interruption_point()

Thread IDs

Objects of class boost : : t hread: : i d can be used to identify threads. Each running thread of execution has a unique 1D obtainable
from the corresponding boost::thread by calling the get_id() member function, or by calling
boost::this_thread::get_id() from within the thread. Objects of class boost : : t hread: : i d can be copied, and used as
keys in associative containers: the full range of comparison operators is provided. Thread IDs can also be written to an output stream
using the stream insertion operator, though the output format is unspecified.

Each instance of boost : : t hr ead: : i d either refers to some thread, or Not-a-Thread. Instances that refer to Not-a-Thread compare
equal to each other, but not equal to any instances that refer to an actual thread of execution. The comparison operators on
boost : : t hread: : i d yield a total order for every non-equal thread ID.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Thread

ClaSS t hread

#i ncl ude <boost/thread/thread. hpp>

class thread

{

publi c:
thread();
~thread() ;

tenpl ate <cl ass F>
explicit thread(F f);

tenpl ate <class F,class Al,class A2,...>
thread(F f, Al al, A2 a2,...);

tenpl ate <cl ass F>
thread(detail::thread_nove_t<F> f);

/1l nove support
thread(detail::thread_nove_t<thread> Xx);

thread& operator=(detail::thread_nove_t<thread> x);
operator detail::thread_nove_t<thread>();

detail ::thread_nove_t <thread> nove();

voi d swap(thread& x);

class id;
id get_id() const;

bool joinable() const;
void join();
bool tined_join(const systemtime& wait_until);

t enpl at e<t ypenane Ti meDur ati on>
bool tined_join(TinmeDuration const& rel _tine);

voi d detach();
static unsigned hardware_concurrency();

t ypedef platformspecific-type native_handl e_type;
nati ve_handl e_type native_handl e();

void interrupt();
bool interruption_requested() const;

/1 backwards conpatibility
bool operator==(const thread& other) const;
bool operator!=(const thread& other) const;

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

static void yield();
static void sl eep(const systemtine& xt);

b
voi d swap(thread& | hs, thread& rhs);
detail ::thread_nove_t <t hread> nove(detail::thread_nove_t<thread> t);

Default Constructor

thread();
Effects: Constructs a boost : : t hr ead instance that refers to Not-a-Thread.
Throws: Nothing

Move Constructor

thread(detail::thread_nove_t <t hread> ot her);
Effects: Transfers ownership of the thread managed by ot her (if any) to the newly constructed boost : : t hr ead
instance.
Postconditions: ot her->get _id()==thread::id()
Throws: Nothing

Move assignment operator

thread& operator=(detail::thread_npve_t <t hread> other);

Effects: Transfers ownership of the thread managed by ot her (if any) to *t hi s. If there was a thread previously
associated with *t hi s then that thread is detached.

Postconditions: ot her->get id()==thread::id()

Throws: Nothing

Thread Constructor

t enpl at e<t ypenane Cal | abl e>
thread(Call abl e func);

Preconditions: Cal | abl e must by copyable.

Effects: f unc is copied into storage managed internally by the thread library, and that copy is invoked on a newly-
created thread of execution. If this invocation results in an exception being propagated into the internals of
the thread library that is not of type boost : : t hread_i nt errupt ed, then std: : ter m nat e() will be

called.
Postconditions: *t hi s refers to the newly created thread of execution.
Throws: boost : :thread_resource_error if anerror occurs.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Thread Constructor with arguments

tenmpl ate <class F,class Al,class A2,...>
thread(F f, Al al, A2 a2,...);

Preconditions:

Effects:

Postconditions:
Throws:

Note:

F and each An must by copyable or movable.

As if t hread(boost : : bi nd(f, al,a2,...)). Consequently, f and each an are copied into internal
storage for access by the new thread.

*t hi s refers to the newly created thread of execution.
boost: :thread_resource_error if anerror occurs.

Currently up to nine additional arguments a1l to a9 can be specified in addition to the function f .

Thread Destructor

~thread();
Effects: If *t hi s has an associated thread of execution, calls det ach() . Destroys *t hi s.
Throws: Nothing.

Member function j oi nabl e()

bool joinable() const;

Returns: true if *t hi s refers to a thread of execution, f al se otherwise.

Throws: Nothing

Member function join()

void join();

Preconditions:
Effects:

Postconditions:

Throws:

Notes:

thi s->get _id()!=boost::this_thread::get_id()
If *t hi s refers to a thread of execution, waits for that thread of execution to complete.

If *t hi s refers to a thread of execution on entry, that thread of execution has completed. *t hi s no longer
refers to any thread of execution.

boost : : t hread_i nt errupt ed if the current thread of execution is interrupted.

j oi n() is one of the predefined interruption points.

Member function tined joi n()

bool tined_join(const systemtime& wait_until);

t enpl at e<t ypenane Ti meDur ati on>
bool tinmed_join(TinmeDuration const& rel _tine);

Preconditions:

this->get _id()!=boost::this_thread::get_id()

10

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Effects: If *t hi s refers to a thread of execution, waits for that thread of execution to complete, the timewai t _unti |
has been reach or the specified duration r el _t i me has elapsed. If *t hi s doesn't refer to a thread of execu-
tion, returns immediately.

Returns: true if *t hi s refers to a thread of execution on entry, and that thread of execution has completed before
the call times out, f al se otherwise.

Postconditions: If *t hi s refers to a thread of execution on entry, and t i med_j oi n returns t r ue, that thread of execution
has completed, and *t hi s no longer refers to any thread of execution. If this call to ti med_j oi n returns
fal se, *t hi s is unchanged.

Throws; boost : : t hread_i nt er r upt ed if the current thread of execution is interrupted.

Notes: timed_j oi n() is one of the predefined interruption points.
Member function detach()

voi d detach();

Effects: If *t hi s refers to a thread of execution, that thread of execution becomes detached, and no longer has an
associated boost : : t hr ead object.

Postconditions: *t hi s no longer refers to any thread of execution.

Throws: Nothing

Member function get_id()
thread::id get_id() const;

Returns: If *t hi s refers to a thread of execution, an instance of boost : : t hread: : i d that represents that thread. Otherwise
returns a default-constructed boost : : t hread: : i d.

Throws: Nothing

Member function interrupt ()
void interrupt();

Effects: If *t hi s refers to a thread of execution, request that the thread will be interrupted the next time it enters one of the
predefined interruption points with interruption enabled, or if it is currently blocked in a call to one of the predefined
interruption points with interruption enabled .

Throws: Nothing

Static member function nar dwar e_concurrency()

unsi gned har dwar e_concurrency();

Returns: The number of hardware threads available on the current system (e.g. number of CPUs or cores or hyperthreading
units), or 0 if this information is not available.

Throws: Nothing

11

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Member function nati ve_handl e()

t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type native_handl e();

Effects: Returns an instance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, nat i ve_handl e() and nati ve_handl e_t ype are not present.

Throws: Nothing.
oper at or ==

bool operator==(const thread& other) const;
Returns: get _i d()==ot her.get _id()
operator!=

bool operator!=(const thread& other) const;
Returns: get _id()!=other.get_id()
Static member function sieep()

voi d sl eep(systemtinme const& abs_tine);

Effects: Suspends the current thread until the specified time has been reached.
Throws: boost : : t hread_i nt er r upt ed if the current thread of execution is interrupted.
Notes: sl eep() is one of the predefined interruption points.

Static member function yiel d()
void yield();

Effects: See boost::this_thread::yield().

Member function swap()

voi d swap(thread& other);

Effects: Exchanges the threads of execution associated with *t hi s and ot her, so *t hi s is associated with the
thread of execution associated with ot her prior to the call, and vice-versa.

Postconditions: t hi s->get _i d() returnsthe same value asot her . get _i d() priortothecall. ot her. get _i d() returns
the same value as t hi s- >get _i d() prior to the call.

Throws: Nothing.

12

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
g

Thread

Non-member function swap()

#i ncl ude <boost/thread/thread. hpp>
voi d swap(thread& | hs,thread& rhs)
Effects: | hs. swap(rhs).

Non-member function nove()

#i ncl ude <boost/thread/thread. hpp>

detail ::thread_nove_t <t hread> nove(detail::thread_nove_t<thread> t)
Returns: t.
Enables moving thread objects. e.g.

extern void some_func();
boost::thread t(sone_func);
boost::thread t2(boost::nmove(t)); // transfer thread fromt to t2

Class boost: :thread::id

#i ncl ude <boost/thread/thread. hpp>

class thread::id

{
publi c:
bd();
bool operator==(const id& y) const;
bool operator!=(const id& y) const;
bool operator<(const id& y) const;
bool operator>(const id& y) const;
bool operator<=(const id& y) const;
bool operator>=(const id& y) const;
tenpl at e<cl ass charT, class traits>
friend std::basic_ostream<charT, traits>&
oper ator<<(std::basic_ostream<charT, traits>& os, const id& X);
b

Default constructor

id();
Effects: Constructs a boost : : t hread: : i d instance that represents Not-a-Thread.
Throws: Nothing

13

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

oper at or ==

bool operator==(const id& y) const;

Returns: true if *t hi s and y both represent the same thread of execution, or both represent Not-a-Thread, f al se otherwise.
Throws: Nothing
operator!=

bool operator!=(const id& y) const;

Returns: true if *t hi s and y represent different threads of execution, or one represents a thread of execution, and the other
represent Not-a-Thread, f al se otherwise.

Throws: Nothing

oper at or <

bool operator<(const id& y) const;

Returns: trueif*this! =y istrue and the implementation-defined total order of boost : : t hr ead: : i d values places*t hi s
before y, f al se otherwise.

Throws: Nothing

Note: Aboost: :thread: :id instance representing Not-a-Thread will always compare less than an instance representing
a thread of execution.

oper at or >

bool operator>(const id& y) const

Returns: y<*this
Throws: Nothing
oper at or >=

bool operator<=(const id& y) const;

Returns: I (y<*this)
Throws: Nothing
oper at or >=

bool operator>=(const id& y) const;

Returns: I'(*this<y)

Throws: Nothing

14

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Thread

Friend operat or <<

tenpl at e<cl ass charT, class traits>
friend std::basic_ostrean<charT, traits>&
oper at or <<(std:: basic_ostream<charT, traits>& os, const id& X);

Effects: Writes a representation of the boost : : t hr ead: : i d instance x to the stream os, such that the representation of two
instances of boost : : t hread: : i d a and b is the same if a==b, and different if a! =b.

Returns: 0s
Namespace this_tnread
Non-member function get id()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
thread::id get_id();
}
Returns: An instance of boost : : t hread: : i d that represents that currently executing thread.
Throws: boost: :thread_resource_error if anerror occurs.

Non-member function interruption_point ()

#i ncl ude <boost/thread/thread. hpp>

nanmespace this_thread

{
voi d interruption_point();
}
Effects: Check to see if the current thread has been interrupted.
Throws: boost::thread_i nterrupted if boost::this_thread::interruption_enabl ed() and

boost::this_thread::interruption_requested() bothreturntrue.

Non-member function i nterruption_requested()

#i ncl ude <boost/thread/thread. hpp>

nanmespace this_thread

{
bool interruption_requested();
}
Returns: t r ue if interruption has been requested for the current thread, f al se otherwise.
Throws: Nothing.

15

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Non-member function i nterruption_enabl ed()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
bool interruption_enabl ed();
}
Returns: t rue if interruption has been enabled for the current thread, f al se otherwise.
Throws: Nothing.

Non-member function sieep()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
t enpl at e<t ypenane Ti meDur ati on>
voi d sl eep(TinmeDuration const& rel _tine);
voi d sl eep(systemtime const& abs_tine)
}
Effects: Suspends the current thread until the time period specified by rel _ti me has elapsed or the time point specified by
abs_ti me has been reached.
Throws: boost : : t hread_i nt er r upt ed if the current thread of execution is interrupted.
Notes: sl eep() is one of the predefined interruption points.

Non-member function yiel d()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
void yield();
}
Effects: Gives up the remainder of the current thread's time slice, to allow other threads to run.
Throws: Nothing.

16

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Class disable_interruption

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
cl ass disable_interruption
{
public:
di sabl e_interruption();
~di sabl e_interruption();
b
}

boost : : this_t hread: : di sabl e_i nt errupti on disables interruption for the current thread on construction, and restores the
prior interruption state on destruction. Instances of di sabl e_i nt er r upt i on cannot be copied or moved.

Constructor

di sabl e_interruption();

Effects: Stores the current state of boost : : thi s_thread: : i nterruption_enabl ed() and disables interruption
for the current thread.

Postconditions: boost::this_thread::interruption_enabl ed() returnsfal se for the current thread.
Throws: Nothing.
Destructor

~di sabl e_interruption();

Preconditions: Must be called from the same thread from which *t hi s was constructed.

Effects: Restores the current state of boost : : t his_t hread: : i nterrupti on_enabl ed() forthe current thread
to that prior to the construction of *t hi s.

Postconditions: boost::this_thread::interruption_enabl ed() forthe current thread returns the value stored in
the constructor of *t hi s.

Throws: Nothing.

17

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Class restore_interruption

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
class restore_interruption
{
public:
explicit restore_interruption(disable_interruption& disabler);
~restore_interruption();
b
}

On construction of an instance of boost : : t hi s_t hread: : rest ore_i nt er rupt i on, the interruption state for the current thread
is restored to the interruption state stored by the constructor of the supplied instance of boost : : t hi s_t hr ead: : di sabl e_i nter -
rupt i on. When the instance is destroyed, interruption is again disabled. Instances of r est or e_i nt er r upt i on cannot be copied
or moved.

Constructor

explicit restore_interruption(disable_interruption& disabler);

Preconditions: Must be called from the same thread from which di sabl er was constructed.

Effects: Restores the current state of boost : : t his_thread: : i nterrupti on_enabl ed() forthe current thread
to that prior to the construction of di sabl er.

Postconditions: boost::this_thread::interruption_enabl ed() forthe current thread returns the value stored in
the constructor of di sabl er.

Throws: Nothing.

Destructor

~restore_interruption();

Preconditions: Must be called from the same thread from which *t hi s was constructed.

Effects: Disables interruption for the current thread.

Postconditions: boost::this_thread::interruption_enabl ed() forthe current thread returns f al se.
Throws: Nothing.

Non-member function template at_thread_exit ()

#i ncl ude <boost/thread/thread. hpp>

t enpl at e<t ypenane Cal | abl e>
void at_thread exit(Callable func);

Effects: A copy of func is placed in thread-specific storage. This copy is invoked when the current thread exits
(even if the thread has been interrupted).

Postconditions: A copy of f unc has been saved for invocation on thread exit.

18

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Throws; st d: : bad_al | oc if memory cannot be allocated for the copy of the function, boost: :thread_re-
sour ce_error if any other error occurs within the thread library. Any exception thrown whilst copying
f unc into internal storage.

Note: This function is not called if the thread was terminated forcefully using platform-specific APIs, or if the
thread is terminated due to a call to exit (), abort () orstd::term nate(). In particular, returning
from nmain() is equivalent to call to exit(), so will not call any functions registered with
at _thread_exit()

CI ass tnr ead_group

#i ncl ude <boost/thread/thread. hpp>

cl ass thread_group:
private noncopyabl e

{

public:
thread_group();
~t hread_group();
t enpl at e<t ypenane F>
thread* create_thread(F threadfunc);
voi d add_thread(thread* thrd);
voi d renove_thread(thread* thrd);
void join_all();
void interrupt_all ();
int size() const;

s

t hr ead_gr oup provides for a collection of threads that are related in some fashion. New threads can be added to the group with
add_t hr ead and cr eat e_t hr ead member functions. t hr ead_gr oup is not copyable or movable.

Constructor

t hread_group();

Effects: Create a new thread group with no threads.

Destructor

~t hread_group();

Effects: Destroy *t hi s and del et e all boost : : t hr ead objects in the group.

Member function create_thr ead()

t enpl at e<t ypenane F>
thread* create_thread(F threadfunc);

Effects: Create a new boost : : t hr ead object as-if by new t hr ead(t hr eadf unc) and add it to the group.
Postcondition: t hi s->si ze() is increased by one, the new thread is running.
Returns: A pointer to the new boost : : t hr ead object.

19

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Member function add_thread()

voi d add_thread(thread* thrd);

Precondition: The expression del et e t hr d is well-formed and will not result in undefined behaviour.
Effects: Take ownership of the boost : : t hr ead object pointed to by t hr d and add it to the group.
Postcondition: t hi s->si ze() is increased by one.

Member function remove_t hread()

voi d renove_t hread(thread* thrd);

Effects: If t hr d is a member of the group, remove it without calling del et e.

Postcondition: If t hr d was a member of the group, t hi s- >si ze() is decreased by one.

Member function join_ali()

void join_all();

Effects: Call j oi n() oneach boost : : t hr ead object in the group.
Postcondition: Every thread in the group has terminated.
Note: Since j oi n() is one of the predefined interruption points, j oi n_al | () is also an interruption point.

Member function interrupt_ali()

void interrupt_all();

Effects: Callinterrupt () oneach boost: : t hread object in the group.

Member function size()

int size();
Returns: The number of threads in the group.
Throws: Nothing.

Synchronization

Mutex Concepts

A mutex object facilitates protection against data races and allows thread-safe synchronization of data between threads. A thread
obtains ownership of a mutex object by calling one of the lock functions and relinquishes ownership by calling the corresponding
unlock function. Mutexes may be either recursive or non-recursive, and may grant simultaneous ownership to one or many threads.
Boost.Thread supplies recursive and non-recursive mutexes with exclusive ownership semantics, along with a shared ownership
(multiple-reader / single-writer) mutex.

20

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Boost.Thread supports four basic concepts for lockable objects: Lockabl e, Ti medLockabl e, Shar edLockabl e and Upgr ade-
Lockabl e. Each mutex type implements one or more of these concepts, as do the various lock types.

Lockabl e CONCept

The Lockabl e concept models exclusive ownership. A type that implements the Lockabl e concept shall provide the following

member functions:
* void lock();

* bool

e void unlock();

try_lock();

Lock ownership acquired through a call to | ock() ortry_I ock() must be released through a call to unl ock().

voi d | ock()
Effects:
Postcondition:
Throws:

bool try_lock()

Effects:

Returns:
Postcondition:
Throws:

voi d unl ock()
Precondition:
Effects:
Postcondition:

Throws:

The current thread blocks until ownership can be obtained for the current thread.
The current thread owns *t hi s.

boost: :thread_resource_error if anerror occurs.

Attempt to obtain ownership for the current thread without blocking.
t r ue if ownership was obtained for the current thread, f al se otherwise.
If the call returns t r ue, the current thread owns the *t hi s.

boost: :thread_resource_error if anerror occurs.

The current thread owns *t hi s.
Releases ownership by the current thread.
The current thread no longer owns *t hi s.

Nothing

Ti medLockabl e CONCept

The Ti medLockabl e concept refines the Lockabl e concept to add support for timeouts when trying to acquire the lock.

A type that implements the Ti medLockabl e concept shall meet the requirements of the Lockabl e concept. In addition, the following
member functions must be provided:

* bool

e tenpl at e<typenane Durati onType> bool

tined_| ock(boost::systemtinme const& abs_tine);

timed_| ock(DurationType const& rel _tine);

Lock ownership acquired through a call to t i med_| ock() must be released through a call to unl ock() .

21

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

bool tinmed_| ock(boost::systemtime const& abs_tine)

Effects: Attempt to obtain ownership for the current thread. Blocks until ownership can be obtained, or the specified
time is reached. If the specified time has already passed, behavesastry | ock().

Returns: t rue if ownership was obtained for the current thread, f al se otherwise.
Postcondition: If the call returns t r ue, the current thread owns *t hi s.
Throws: boost: :thread_resource_error if anerror occurs.

t enpl at e<t ypenane DurationType> bool tined_| ock(DurationType const& rel _tine)
Effects: As-ifti med_| ock(boost::get_systemtime()+rel _tine).

shar edLockabl e CONCepPt

The Shar edLockabl e concept is a refinement of the Ti medLockabl e concept that allows for shared ownership as well as exclusive
ownership. This is the standard multiple-reader / single-write model: at most one thread can have exclusive ownership, and if any
thread does have exclusive ownership, no other threads can have shared or exclusive ownership. Alternatively, many threads may
have shared ownership.

For a type to implement the Shar edLockabl e concept, as well as meeting the requirements of the Ti nedLockabl e concept, it
must also provide the following member functions:

e void | ock_shared();

* bool try_lock_shared();

e bool unlock_shared();

* bool tined_|ock_shared(boost::systemtine const& abs_tine);

Lock ownership acquired through acall to | ock_shared(),try_| ock_shared() orti med_| ock_shared() must be released
through a call to unl ock_shared().

voi d | ock_shared()

Effects: The current thread blocks until shared ownership can be obtained for the current thread.
Postcondition: The current thread has shared ownership of *t hi s.
Throws: boost: :thread_resource_error if anerror occurs.

bool try_l ock_shared()

Effects: Attempt to obtain shared ownership for the current thread without blocking.
Returns: t r ue if shared ownership was obtained for the current thread, f al se otherwise.
Postcondition: If the call returns t r ue, the current thread has shared ownership of *t hi s.
Throws: boost: :thread_resource_error if anerror occurs.

bool timed_| ock_shared(boost::systemtinme const& abs_tine)

Effects: Attempt to obtain shared ownership for the current thread. Blocks until shared ownership can be obtained,
or the specified time is reached. If the specified time has already passed, behaves astry_| ock_shar ed() .

Returns: t r ue if shared ownership was acquired for the current thread, f al se otherwise.

22

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

If the call returns t r ue, the current thread has shared ownership of *t hi s

boost: :thread_resource_error if anerror occurs.

Postcondition:
The current thread has shared ownership of *t hi s.

Throws:
voi d unl ock_shared()

Precondition:

Effects:
Nothing

Postcondition:
Upgr adeLockabl e Concept
shared ownership and exclusive ownership. This is an extension to the multiple-reader / single-write model provided by the
thread with upgradable ownership may at any time attempt to upgrade that ownership to exclusive ownership. If no other threads
If a thread with upgradable ownership tries to upgrade whilst other threads have shared ownership, the attempt will fail and the

Releases shared ownership of *t hi s by the current thread.
The current thread no longer has shared ownership of *t hi s.
Throws:
The Upgr adeLockabl e concept is a refinement of the Shar edLockabl e concept that allows for upgradable ownership as well as

Shar edLockabl e concept: a single thread may have upgradable ownership at the same time as others have shared ownership. The
have shared ownership, the upgrade is completed immediately, and the thread now has exclusive ownership, which must be relinquished

by a call to unl ock(), just as if it had been acquired by a call to | ock().
thread will block until exclusive ownership can be acquired.
Ownership can also be downgraded as well as upgraded: exclusive ownership of an implementation of the Upgr adeLockabl e
concept can be downgraded to upgradable ownership or shared ownership, and upgradable ownership can be downgraded to plain

For a type to implement the Upgr adeLockabl e concept, as well as meeting the requirements of the Shar edLockabl e concept, it

shared ownership.
must also provide the following member functions:

bool
unl ock_upgrade_and_I ock();

voi d
voi d unl ock_and_| ock_upgrade();
unl ock_upgrade_and_I| ock_shared();

voi d

e void | ock_upgrade();
unl ock_upgrade();
Lock ownership acquired through a call to | ock_upgr ade() must be released through a call to unl ock_upgr ade() . If the own-
ership type is changed through a call to one of the unl ock_xxx_and_I ock_yyy() functions, ownership must be released through

a call to the unlock function corresponding to the new level of ownership.
The current thread blocks until upgrade ownership can be obtained for the current thread.

The current thread has upgrade ownership of *t hi s.

voi d | ock_upgrade()
boost: :thread_resource_error if anerror occurs.

Effects:

Postcondition:

The current thread has upgrade ownership of *t hi s.
httpo://www.renderx.com/

Throws:

voi d unl ock_upgrade()
Releases upgrade ownership of *t hi s by the current thread.
23

Precondition:

Effects:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Postcondition: The current thread no longer has upgrade ownership of *t hi s.

Throws: Nothing
voi d unl ock_upgrade_and_| ock()

Precondition: The current thread has upgrade ownership of *t hi s.

Effects: Atomically releases upgrade ownership of *t hi s by the current thread and acquires exclusive ownership of
*t hi s. If any other threads have shared ownership, blocks until exclusive ownership can be acquired.

Postcondition: The current thread has exclusive ownership of *t hi s.
Throws: Nothing

voi d unl ock_upgrade_and_| ock_shared()

Precondition: The current thread has upgrade ownership of *t hi s.

Effects: Atomically releases upgrade ownership of *t hi s by the current thread and acquires shared ownership of
*t hi s without blocking.

Postcondition: The current thread has shared ownership of *t hi s.

Throws; Nothing
voi d unl ock_and_| ock_upgrade()

Precondition: The current thread has exclusive ownership of *t hi s.

Effects: Atomically releases exclusive ownership of *t hi s by the current thread and acquires upgrade ownership of
*t hi s without blocking.

Postcondition: The current thread has upgrade ownership of *t hi s.

Throws: Nothing
Lock Types
Class template 1 ock_guard

#i ncl ude <boost/thread/| ocks. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass | ock_guard

{

publi c:
explicit | ock_guard(Lockable& m);
| ock_guar d(Lockabl e& m_, boost: : adopt _| ock_t);
~l ock_guard() ;

b

boost : : | ock_guar d is very simple: on construction it acquires ownership of the implementation of the Lockabl e concept supplied
as the constructor parameter. On destruction, the ownership is released. This provides simple RAII-style locking of a Lockabl e
object, to facilitate exception-safe locking and unlocking. In addition, the | ock_guar d(Lockabl e & m boost : : adopt _| ock_t)
constructor allows the boost : : | ock_guar d object to take ownership of a lock already held by the current thread.

24

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

| ock_guard(Lockable & m

Effects: Stores a reference to m Invokes m | ock() .

Throws: Any exception thrown by the call to m | ock().

| ock_guard(Lockabl e & m boost: : adopt _I ock_t)

Precondition: The current thread owns a lock on mequivalent to one obtained by a call to m | ock() .
Effects: Stores a reference to m Takes ownership of the lock state of m
Throws: Nothing.

~l ock_guard()
Effects: Invokes m unl ock() on the Lockabl e object passed to the constructor.

Throws; Nothing.

25

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Class template uni que_l ock

#i ncl ude <boost/thread/| ocks. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass uni que_I ock

{
publi c:
uni que_Il ock();
explicit unique_| ock(Lockable& m);
uni que_| ock(Lockabl e& m , adopt _I ock_t);
uni que_| ock(Lockabl e& m , defer_lock_t);
uni que_| ock(Lockable& m ,try _to_lock_t);
uni que_| ock(Lockabl e& m ,systemtine const& target_tinme);
~uni que_l ock() ;
uni que_| ock(detail::thread_nove_t <uni que_| ock<Lockabl e> > ot her);
uni que_| ock(detail::thread_nove_t <upgrade_| ock<Lockabl e> > ot her);
operator detail::thread_nove_t <uni que_| ock<Lockabl e> >();
detail : :thread_nove_t <uni que_| ock<Lockabl e> > nove();
uni que_| ock& operator=(detail::thread_nove_t <uni que_| ock<Lockabl e> > ot her);
uni que_| ock& operator=(detail::thread_nove_t <upgrade_| ock<Lockabl e> > other);
voi d swap(uni que_l ock& ot her) ;
voi d swap(detail::thread_nove_t <uni que_| ock<Lockabl e> > ot her);
void | ock();
bool try_lock();
t enpl at e<t ypenane Ti meDur ati on>
bool timed | ock(TineDuration const& relative_ tine);
bool tinmed_|l ock(::boost::systemtime const& absolute_tine);
voi d unl ock();
bool owns_| ock() const;
oper at or unspeci fied-bool -type() const;
bool operator!() const;
Lockabl e* mutex() const;
Lockabl e* rel ease();
b

boost : : uni que_I ock is more complex than boost : : | ock_guar d: not only does it provide for RAII-style locking, it also allows
for deferring acquiring the lock until the | ock() member function is called explicitly, or trying to acquire the lock in a non-blocking
fashion, or with a timeout. Consequently, unl ock() isonly called in the destructor if the lock object has locked the Lockabl e object,
or otherwise adopted a lock on the Lockabl e object.

Specializations of boost : : uni que_| ock model the Ti medLockabl e concept if the supplied Lockabl e type itself models
Ti nedLockabl e concept (e.g. boost : : uni que_| ock<boost: : ti nmed_nut ex>), or the Lockabl e concept otherwise (e.g.
boost : : uni que_| ock<boost : : nut ex>).

An instance of boost : : uni que_I ock is said to own the lock state of a Lockabl e mif mut ex() returns a pointer to mand
owns_| ock() returnstrue. If an object that ownsthe lock state of a Lockabl e object is destroyed, then the destructor will invoke
nmut ex() - >unl ock().

The member functions of boost : : uni que_I ock are not thread-safe. In particular, boost : : uni que_| ock is intended to model
the ownership of a Lockabl e object by a particular thread, and the member functions that release ownership of the lock state (in-
cluding the destructor) must be called by the same thread that acquired ownership of the lock state.

26

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

uni que_| ock()

Effects: Creates a lock object with no associated mutex.
Postcondition: owns_| ock() returnsf al se. mut ex() returns NULL.
Throws: Nothing.

uni que_| ock(Lockabl e & m

Effects: Stores a reference to m Invokes m | ock() .
Postcondition: owns_| ock() returnstrue. mut ex() returns &m
Throws: Any exception thrown by the call to m | ock().

uni que_| ock(Lockabl e & m boost:: adopt_| ock_t)

Precondition: The current thread owns an exclusive lock on m

Effects: Stores a reference to m Takes ownership of the lock state of m
Postcondition: owns_l ock() returnstrue. mut ex() returns &m

Throws; Nothing.

uni que_| ock(Lockabl e & m boost::defer_|ock_t)

Effects: Stores a reference to m
Postcondition: owns_l ock() returnsf al se. mut ex() returns &m
Throws; Nothing.

uni que_| ock(Lockabl e & mboost::try to_lock_t)

Effects: Stores a reference to m Invokes mtry_| ock(), and takes ownership of the lock state if the call returns
true.
Postcondition: mut ex() returns &m Ifthe calltotry_| ock() returnedtrue, then owns_| ock() returnstr ue, otherwise

owns_| ock() returnsf al se.

Throws; Nothing.
uni que_| ock(Lockabl e & m boost::systemtine const& abs_tine)

Effects: Stores a reference to m Invokes m ti med_| ock(abs_ti me), and takes ownership of the lock state if the
call returns t r ue.

Postcondition: mut ex () returns &m Ifthe calltoti med_| ock() returnedt r ue, then owns_| ock() returnst r ue, otherwise
owns_| ock() returnsf al se.

Throws; Any exceptions thrown by the call tom ti med_| ock(abs_ti ne).
~uni que_l ock()

Effects: Invokes mut ex() - > unl ock() if owns_| ock() returnstrue.

Throws: Nothing.

27

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

bool owns_I| ock() const

Returns:

Throws:

true if the *t hi s owns the lock on the Lockabl e object associated with *t hi s.

Nothing.

Lockabl e* nutex() const

Returns:

Throws:

A pointer to the Lockabl e object associated with *t hi s, or NULL if there is no such object.

Nothing.

oper at or unspeci fied-bool -type() const

Returns:

Throws:

If owns_

| ock() would returnt r ue, a value that evaluates to t r ue in boolean contexts, otherwise a value that eval-

uates to f al se in boolean contexts.

Nothing.

bool operator! () const

Returns:

Throws:

I owns_| ock().

Nothing.

Lockabl e* rel ease()

Effects:

Returns:

Throws:

Postcondition:

The association between *t hi s and the Lockabl e object is removed, without affecting the lock state of the
Lockabl e object. If owns_| ock() would have returned t r ue, it is the responsibility of the calling code to
ensure that the Lockabl e is correctly unlocked.

A pointer to the Lockabl e object associated with *t hi s at the point of the call, or NULL if there is no such
object.

Nothing.

*t hi s is no longer associated with any Lockabl e object. mut ex() returns NULL and owns_| ock() returns
f al se.

28

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Class template shared_i ock

#i ncl ude <boost/thread/| ocks. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass shared_| ock

{
publi c:
shared_| ock();
explicit shared_| ock(Lockable& m);
shared_| ock(Lockabl e& m , adopt _| ock_t);
shared | ock(Lockabl e& m , defer lock t);
shared_| ock(Lockabl e& m ,try_to_l ock_t);
shared_| ock(Lockabl e& m ,systemtime const& target_tinme);
shared | ock(detail::thread _nove_ t<shared_ | ock<Lockabl e> > other);
shared_l ock(detail::thread_nove_t <uni que_I| ock<Lockabl e> > ot her);
shared_| ock(detail::thread_npove_t <upgrade_| ock<Lockabl e> > ot her);
~shared_| ock();
operator detail::thread_nove_t <shared_| ock<Lockabl e> >();
detail ::thread nove t <shared | ock<Lockabl e> > nove();
shared_| ock& operator=(detail::thread_move_t <shared_| ock<Lockabl e> > ot her);
shared_| ock& operator=(detail::thread_move_t <uni que_| ock<Lockabl e> > ot her);
shared_| ock& operator=(detail::thread_nove_t <upgrade_| ock<Lockabl e> > other);
voi d swap(shared_| ock& ot her) ;
void | ock();
bool try_lock();
bool tined_|l ock(boost::systemtine const& target_tinme);
voi d unl ock();
oper at or unspeci fi ed-bool -type() const;
bool operator!() const;
bool owns_| ock() const;
b

Like boost : : uni que_I ock, boost : : shar ed_| ock models the Lockabl e concept, but rather than acquiring unique ownership
of the supplied Lockabl e object, locking an instance of boost : : shar ed_| ock acquires shared ownership.

Like boost : : uni que_I ock, not only does it provide for RAII-style locking, it also allows for deferring acquiring the lock until
the I ock() member function is called explicitly, or trying to acquire the lock in a non-blocking fashion, or with a timeout. Con-
sequently, unl ock() is only called in the destructor if the lock object has locked the Lockabl e object, or otherwise adopted a lock
on the Lockabl e object.

An instance of boost: : shared_| ock is said to own the lock state of a Lockabl e mif mut ex() returns a pointer to mand
owns_| ock() returnstr ue. If an object that ownsthe lock state of a Lockabl e object is destroyed, then the destructor will invoke
nmut ex() - >unl ock_shared().

The member functions of boost : : shar ed_I| ock are not thread-safe. In particular, boost : : shar ed_| ock is intended to model
the shared ownership of a Lockabl e object by a particular thread, and the member functions that release ownership of the lock state
(including the destructor) must be called by the same thread that acquired ownership of the lock state.

shared_| ock()

Effects: Creates a lock object with no associated mutex.
Postcondition: owns_| ock() returnsf al se. nut ex() returns NULL.
Throws: Nothing.

29

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

shared_| ock(Lockable & m

Effects: Stores a reference to m Invokes m | ock_shared() .
Postcondition: owns_| ock() returnstrue. mut ex() returns &m
Throws: Any exception thrown by the call to m | ock_shar ed() .

shared_| ock(Lockabl e & m boost: : adopt _| ock_t)

Precondition: The current thread owns an exclusive lock on m

Effects: Stores a reference to m Takes ownership of the lock state of m
Postcondition: owns_I ock() returnstrue. mut ex() returns &m

Throws; Nothing.

shared_| ock(Lockabl e & m boost::defer_|ock_t)

Effects: Stores a reference to m
Postcondition: owns_l ock() returnsf al se. mut ex() returns &m
Throws; Nothing.

shared_| ock(Lockable & mboost::try to_lock_t)

Effects: Stores a reference to m Invokes m t ry_| ock_shar ed(), and takes ownership of the lock state if the call
returnstr ue.

Postcondition: mut ex() returns & Ifthe calltotry_| ock_shar ed() returnedt r ue, then owns_I ock() returnstr ue,
otherwise owns_| ock() returnsf al se.

Throws; Nothing.
shared_| ock(Lockabl e & m boost::systemtine const& abs_tine)

Effects: Stores a reference to m Invokes m ti med_| ock(abs_ti me), and takes ownership of the lock state if the
call returns t r ue.

Postcondition: mut ex () returns&m Ifthecalltoti med_| ock_shared() returnedt r ue, then owns_I ock() returnstr ue,
otherwise owns_| ock() returnsf al se.

Throws; Any exceptions thrown by the call tom ti med_| ock(abs_ti ne).
~shar ed_| ock()

Effects: Invokes mut ex() - > unl ock_shared() ifowns_| ock() returnstrue.
Throws: Nothing.

bool owns_I| ock() const

Returns: true if the *t hi s owns the lock on the Lockabl e object associated with *t hi s.

Throws: Nothing.

30

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Lockabl e* nutex() const

Returns:

Throws:

A pointer to the Lockabl e object associated with *t hi s, or NULL if there is no such object.

Nothing.

oper ator unspeci fi ed-bool -type() const

Returns:

Throws:

If owns_

I ock() would return t r ue, a value that evaluates to t r ue in boolean contexts, otherwise a value that eval-

uates to f al se in boolean contexts.

Nothing.

bool operator! () const

Returns:

Throws:

I owns_| ock().

Nothing.

Lockabl e* rel ease()

Effects:

Returns:

Throws:

Postcondition:

The association between *t hi s and the Lockabl e object is removed, without affecting the lock state of the
Lockabl e object. If owns_| ock() would have returned t r ue, it is the responsibility of the calling code to
ensure that the Lockabl e is correctly unlocked.

A pointer to the Lockabl e object associated with *t hi s at the point of the call, or NULL if there is no such
object.

Nothing.

*t hi s is no longer associated with any Lockabl e object. mut ex() returns NULL and owns_| ock() returns
fal se.

31

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Class template upgr ade_| ock

#i ncl ude <boost/thread/| ocks. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass upgrade_| ock

{
publi c:
explicit upgrade_|l ock(Lockabl e& m);
upgr ade_l ock(detail ::thread_nove_t <upgrade_| ock<Lockabl e> > ot her);
upgr ade_l ock(detail ::thread_nopve_t <uni que_| ock<Lockabl e> > ot her);
~upgr ade_|I ock();
operator detail::thread_nove_t <upgrade_| ock<Lockabl e> >();
detail ::thread_nove_t <upgrade_| ock<Lockabl e> > nove();
upgr ade_| ock& operator=(detail::thread_nove_t <upgrade_| ock<Lockabl e> > ot her);
upgr ade_| ock& operator=(detail::thread_nove_t <uni que_| ock<Lockabl e> > other);
voi d swap(upgrade_| ock& ot her);
void | ock();
voi d unl ock();
oper at or unspeci fied-bool -type() const;
bool operator!() const;
bool owns_| ock() const;
b

Like boost : : uni que_l ock, boost : : upgr ade_| ock models the Lockabl e concept, but rather than acquiring unique ownership
of the supplied Lockabl e object, locking an instance of boost : : upgr ade_| ock acquires upgrade ownership.

Like boost : : uni que_I ock, not only does it provide for RAII-style locking, it also allows for deferring acquiring the lock until
the I ock() member function is called explicitly, or trying to acquire the lock in a non-blocking fashion, or with a timeout. Con-
sequently, unl ock() isonly called in the destructor if the lock object has locked the Lockabl e object, or otherwise adopted a lock
on the Lockabl e object.

An instance of boost : : upgrade_I ock is said to own the lock state of a Lockabl e mif nut ex() returns a pointer to mand
owns_| ock() returnstr ue. If an object that ownsthe lock state of a Lockabl e object is destroyed, then the destructor will invoke
nmut ex() - >unl ock_upgr ade().

The member functions of boost : : upgr ade_| ock are not thread-safe. In particular, boost : : upgr ade_| ock is intended to model
the upgrade ownership of a Lockabl e object by a particular thread, and the member functions that release ownership of the lock
state (including the destructor) must be called by the same thread that acquired ownership of the lock state.

32

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Class template upgr ade_t o_uni que_| ock

#i ncl ude <boost/thread/| ocks. hpp>

tenpl ate <cl ass Lockabl e>
cl ass upgrade_t o_uni que_Il ock

{
publi c:
explicit upgrade_to_uni que_| ock(upgrade_| ock<Lockabl e>& m);
~upgr ade_t o_uni que_I ock() ;
upgrade_t o_uni que_l ock(detail ::thread_nove_t <upgrade_t o_uni que_I| ock<Lockabl e> > ot her);
upgr ade_t o_uni que_I| ock& operator=(detail ::thread_nove_t <upgrade_t o_uni que_| ock<Lockabl e> > ot h[1
er);
voi d swap(upgrade_to_uni que_| ock& ot her);
oper at or unspeci fi ed-bool -type() const;
bool operator!() const;
bool owns_| ock() const;
b

boost : : upgrade_t o_uni que_| ock allows for a temporary upgrade of an boost : : upgrade_I| ock to exclusive ownership.
When constructed with a reference to an instance of boost : : upgr ade_| ock, if that instance has upgrade ownership on some
Lockabl e object, that ownership is upgraded to exclusive ownership. When the boost : : upgr ade_t o_uni que_| ock instance is
destroyed, the ownership of the Lockabl e is downgraded back to upgrade ownership.

33

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Mutex-specific class scoped_try_l ock

cl ass Mut exType: : scoped_try_Il ock
{

private:

Mut exType: : scoped_try_| ock(Miut exType: : scoped_try_| ock<Mut exType>& ot her) ;

Mut exType: : scoped_try_| ock& operat or =(Mut exType: : scoped_try_| ock<Mut exType>& ot her) ;
publi c:

Mut exType: : scoped_try_| ock()

explicit MitexType::scoped_try_| ock(MiutexType& m ;

Mut exType: : scoped_try_| ock(Mut exType& m_, adopt _| ock_t)

Mut exType: : scoped_try_| ock(Mut exType& m_, defer_| ock_t)

Mut exType: : scoped_try_| ock(Mut exType& m_ ,try _to_l ock_t)

Mut exType: : scoped_try_| ock(Mut exType: : scoped_try_| ock<Mut exType>&& ot her);
Mut exType: : scoped_try_| ock& operat or =(Mut exType: : scoped_try_| ock<Mut exType>&& ot her)

voi d swap(Mut exType: : scoped_try_| ock&& ot her);

void | ock();

bool try_lock();

voi d unl ock()

bool owns_| ock() const;

Mut exType* nmutex() const;
Mut exType* rel ease();
bool operator!() const;

t ypedef unspecified-bool -type bool _type;
oper ator bool _type() const;

The member typedef scoped_t ry_I ock is provided for each distinct Mut ex Ty pe as a typedef to a class with the preceding definition.
The semantics of each constructor and member function are identical to those of boost : : uni que_| ock<Mut exType> for the same
Mut ex Type, except that the constructor that takes a single reference to a mutex will call m t ry_| ock() rather than m I ock() .

Lock functions
Non-member function 1 ock(Lockabl e1, Lockabl e2, . . .)

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2>
voi d | ock(Lockabl el& | 1, Lockabl e2& 1 2);

t enpl at e<t ypenane Lockabl el, t ypenanme Lockabl e2, t ypenane Lockabl e3>
voi d | ock(Lockabl el& | 1, Lockabl e2& | 2, Lockabl e3& | 3);

t enpl at e<t ypenanme Lockabl el, t ypenane Lockabl e2, t ypename Lockabl e3, t ypename Lockabl e4>
voi d | ock(Lockabl el& | 1, Lockabl e2& | 2, Lockabl e3& | 3, Lockabl e4& | 4);

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypename Lockabl e3, t ypenane Lockabl e4, t ypenanme Lock 1
abl e5>
voi d | ock(Lockabl el& | 1, Lockabl e2& | 2, Lockabl e3& | 3, Lockabl e4& | 4, Lockabl e5& 15);

Effects: Locks the Lockabl e objects supplied as arguments in an unspecified and indeterminate order in a way that
avoids deadlock. It is safe to call this function concurrently from multiple threads with the same mutexes (or
other lockable objects) in different orders without risk of deadlock. If any of the | ock() ortry_l ock()
operations on the supplied Lockabl e objects throws an exception any locks acquired by the function will
be released before the function exits.

34

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Throws; Any exceptions thrown by calling | ock() ortry_ Il ock() on the supplied Lockabl e objects.

Postcondition: All the supplied Lockabl e objects are locked by the calling thread.

Non-member function 1 ock(begi n, end)

t enpl at e<t ypenane Forwardlterator>
voi d | ock(Forwardlterator begin, Forwardlterator end);

Preconditions: The val ue_t ype of Forwar dl t er at or must implement the Lockabl e concept

Effects: Locks all the Lockabl e objects in the supplied range in an unspecified and indeterminate order in a way
that avoids deadlock. It is safe to call this function concurrently from multiple threads with the same mutexes
(or other lockable objects) in different orders without risk of deadlock. If any of the | ock() ortry_I ock()
operations on the Lockabl e objects in the supplied range throws an exception any locks acquired by the
function will be released before the function exits.

Throws: Any exceptions thrown by calling | ock() ortry_l ock() on the supplied Lockabl e objects.

Postcondition: All the Lockabl e objects in the supplied range are locked by the calling thread.

Non-member function try_I ock(Lockabl e1, Lockabl €2, .. .)

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2>
int try_|ock(Lockabl el& |1, Lockabl e2& 12)

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenane Lockabl e3>
int try_|lock(Lockablel& |1, Lockabl e2& |2, Lockabl e3& | 3)

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenane Lockabl e3, t ypenanme Lockabl e4>
int try_|ock(Lockabl el& |1, Lockabl e2& |2, Lockabl e3& | 3, Lockabl e4& | 4)

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenanme Lockabl e3, t ypenanme Lockabl e4, t ypenane Lock [1

abl e5>
int try_|ock(Lockabl el& |1, Lockabl e2& |2, Lockabl e3& | 3, Lockabl e4& | 4, Lockabl e5& | 5)

Effects: Callstry_l ock() on each of the Lockabl e objects supplied as arguments. If any of the callstot ry_I ock()
returns f al se then all locks acquired are released and the zero-based index of the failed lock is returned.

Ifanyofthetry_I ock() operations on the supplied Lockabl e objects throws an exception any locks acquired
by the function will be released before the function exits.

Returns: - 1 if all the supplied Lockabl e objects are now locked by the calling thread, the zero-based index of the
object which could not be locked otherwise.

Throws: Any exceptions thrown by calling t ry_I| ock() on the supplied Lockabl e objects.

Postcondition: If the function returns - 1, all the supplied Lockabl e objects are locked by the calling thread. Otherwise any
locks acquired by this function will have been released.

Non-member function try 1 ock(begi n, end)

t enpl at e<t ypenane Forwardlterator>
Forwardlterator try_| ock(Forwardlterator begin, Forwardlterator end);

Preconditions: The val ue_t ype of Forwar dl t er at or must implement the Lockabl e concept

35

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Effects: Callstry_I ock() oneach ofthe Lockabl e objects in the supplied range. Ifany of the callstotry | ock()
returns f al se then all locks acquired are released and an iterator referencing the failed lock is returned.

Ifanyofthetry_I ock() operations on the supplied Lockabl e objects throws an exception any locks acquired
by the function will be released before the function exits.

Returns: end if all the supplied Lockabl e objects are now locked by the calling thread, an iterator referencing the
object which could not be locked otherwise.

Throws; Any exceptions thrown by calling try_| ock() on the supplied Lockabl e objects.

Postcondition: If the function returns end then all the Lockabl e objects in the supplied range are locked by the calling
thread, otherwise all locks acquired by the function have been released.

Mutex Types
Class mutex

#i ncl ude <boost/t hread/ nut ex. hpp>

cl ass nutex:
boost : : noncopyabl e

{

publi c:
mut ex() ;
~mut ex() ;

voi d lock();
bool try_lock();
voi d unl ock();

t ypedef platformspecific-type native_handl e_type;
native_handl e_type native_handl e();

t ypedef uni que_l| ock<nmut ex> scoped_| ock;
t ypedef unspecified-type scoped_try_ | ock;

boost : : nut ex implements the Lockabl e concept to provide an exclusive-ownership mutex. At most one thread can own the lock
on a given instance of boost : : nut ex at any time. Multiple concurrent callsto | ock(),try_Il ock() and unl ock() shall be per-
mitted.

Member function native_handl e()

typedef platformspecific-type native_handl e_type;
nati ve_handl e_type native_handl e();

Effects: Returns an instance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, nat i ve_handl e() and nati ve_handl e_t ype are not present.

Throws; Nothing.

36

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Typedef try_mitex

#i ncl ude <boost/thread/ mut ex. hpp>

typedef nutex try_nutex;
boost::try_nutex isatypedef toboost: : mut ex, provided for backwards compatibility with previous releases of boost.

Class ti med_nut ex

#i ncl ude <boost/thread/ mut ex. hpp>

cl ass timed_nutex:
boost : : noncopyabl e

{

publi c:
timed_mutex();
~timed_mutex();

void | ock();

voi d unl ock();

bool try_lock();

bool tined_|l ock(systemtine const & abs_tine);

t enpl at e<t ypenane Ti meDur ati on>
bool tinmed_| ock(TineDuration const & relative_tine);

t ypedef platformspecific-type native_handl e_type;
native_handl e_type native_handl e();

t ypedef uni que_l ock<tined_nutex> scoped_ti nmed_| ock;

t ypedef unspecified-type scoped_try_| ock;
t ypedef scoped_timed_| ock scoped_| ock;

boost : : ti med_mut ex implements the Ti medLockabl e concept to provide an exclusive-ownership mutex. At most one thread
can own the lock on a given instance of boost : : ti med_nut ex at any time. Multiple concurrent calls to | ock(), try_Il ock(),
timed_l ock(),timed_| ock() and unl ock() shall be permitted.

Member function native_handl e()

typedef platform specific-type native_handl e_type;
native_handl e_type native_handl e();

Effects: Returns an instance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, nat i ve_handl e() and nati ve_handl e_t ype are not present.

Throws: Nothing.

37

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Class recursive_mutex

#i ncl ude <boost/thread/ recursive_mnutex. hpp>

cl ass recursive_mnutex:
boost : : noncopyabl e

{

publi c:
recursive_nutex();
~recursive_nutex();

void | ock();
bool try_lock();
voi d unl ock();

t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type native_handl e();

t ypedef uni que_l ock<recursive_nutex> scoped_| ock;
t ypedef unspecified-type scoped_try_| ock;

boost : : recursi ve_nut ex implements the Lockabl e concept to provide an exclusive-ownership recursive mutex. At most one
thread can own the lock on a given instance of boost : : recursi ve_nut ex at any time. Multiple concurrent calls to | ock(),
try_l ock() andunl ock() shall be permitted. A thread that already has exclusive ownership of a given boost : : r ecur si ve_mut ex
instance can call | ock() ortry_l ock() to acquire an additional level of ownership of the mutex. unl ock() must be called once
for each level of ownership acquired by a single thread before ownership can be acquired by another thread.

Member function native_handl e()

t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type native_handl e();

Effects: Returns an instance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, nat i ve_handl e() and nati ve_handl e_t ype are not present.

Throws: Nothing.

Typed ef recursi ve_try_nmutex

#i ncl ude <boost/thread/recursive_mnutex. hpp>

typedef recursive_mutex recursive_try_nutex;

boost::recursive_try_mutex isatypedef toboost::recursive_nut ex, provided for backwards compatibility with pre-
vious releases of boost.

38

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Class recursive_tinmed_nut ex

#i ncl ude <boost/thread/ recursive_mnutex. hpp>

class recursive_tined nutex:
boost : : noncopyabl e

{
publi c:
recursive_timed nutex();
~recursive_tinmed nmutex();
void | ock();
bool try_lock();
voi d unl ock();
bool tined_|l ock(systemtine const & abs_tine);
t enpl at e<t ypenane Ti meDur ati on>
bool tinmed | ock(TineDuration const & relative tine);
t ypedef platformspecific-type native_handl e_type;
nati ve_handl e_type native_handl e();
t ypedef uni que_l ock<recursive_timed_mutex> scoped_| ock;
t ypedef unspecified-type scoped_try_| ock;
t ypedef scoped_l ock scoped_timed_| ock;
b

boost : : recursi ve_ti med_nut ex implements the Ti medLockabl e concept to provide an exclusive-ownership recursive mutex.
At most one thread can own the lock on a given instance of boost : : recur si ve_t i ned_nut ex at any time. Multiple concurrent
callstol ock(),try_lock(),timed_l ock(),timed_|l ock() and unl ock() shall be permitted. A thread that already has ex-
clusive ownership of a given boost : : recursi ve_t i med_mnut ex instance can call | ock(),ti med_| ock(),timed_| ock() or
try_l ock() to acquire an additional level of ownership of the mutex. unl ock() must be called once for each level of ownership
acquired by a single thread before ownership can be acquired by another thread.

Member function native_handl e()

t ypedef platform specific-type native_handl e_type;
native_handl e_type native_handl e();

Effects: Returns an instance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, nat i ve_handl e() and nati ve_handl e_t ype are not present.

Throws: Nothing.

39

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Class shared_mut ex

#i ncl ude <boost/thread/ shared_mnut ex. hpp>

cl ass shared_nut ex

{

publi c:
shared_mutex();
~shared_nutex();

voi d | ock_shared();

bool try_l ock_shared();

bool tinmed_|l ock_shared(systemtine const& timeout);
voi d unl ock_shared();

void | ock();

bool try_lock();

bool tined_|l ock(systemtinme const& timeout);
voi d unl ock();

voi d | ock_upgrade();
voi d unl ock_upgrade();

voi d unl ock_upgrade_and_| ock() ;

voi d unl ock_and_| ock_upgrade() ;

voi d unl ock_and | ock_shared();

voi d unl ock_upgrade_and_| ock_shared();

The class boost : : shar ed_nut ex provides an implementation of a multiple-reader / single-writer mutex. It implements the Up-
gr adeLockabl e concept.

Multiple concurrent calls to 1ock(), try_lock(), tinmed_lock(), |ock_shared(), try_lock_shared() and
ti med_| ock_shar ed() shall be permitted.

Condition Variables

Synopsis

The classes condi ti on_vari abl e and condi ti on_vari abl e_any provide a mechanism for one thread to wait for notification
from another thread that a particular condition has become true. The general usage pattern is that one thread locks a mutex and then
calls wai t on an instance of condi ti on_vari abl e or condi ti on_vari abl e_any. When the thread is woken from the wait,
then it checks to see if the appropriate condition is now true, and continues if so. If the condition is not true, then the thread then
calls wai t again to resume waiting. In the simplest case, this condition is just a boolean variable:

40

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

boost:: condition_variabl e cond;

boost : : nutex mut;
dat a_ready;
boost: : uni que_Il ock<boost: : mutex> | ock(mut);

bool

voi d process_datal();
void wait_for_data_to_process()
threads to acquire the mutex in order to update the shared data, and ensures that the data associated with the condition is correctly

{
{

}

whi | e(! dat a_r eady)
process_data();
Notice that the | ock is passed to wai t : wai t will atomically add the thread to the set of threads waiting on the condition variable,

cond. wai t (| ock) ;
and unlock the mutex. When the thread is woken, the mutex will be locked again before the call to wai t returns. This allows other
In the mean time, another thread sets the condition to t r ue, and then calls either noti fy_one or noti fy_al | on the condition

synchronized.
variable to wake one waiting thread or all the waiting threads respectively.

void retrieve_data();

voi d prepare_data();
voi d prepare_data_for_processing()
boost: : | ock_guar d<boost:: nutex> | ock(nut);

{
prepare_data();

{

retrieve_data();
}
Note that the same mutex is locked before the shared data is updated, but that the mutex does not have to be locked across the call

tonotify_one.

dat a_ready=true;
This example uses an object of type condi ti on_vari abl e, but would work just as well with an object of type condi ti on_vari -
typically has a more complex implementation than condi ti on_vari abl e.

cond. notify_one();
abl e_any:condi ti on_vari abl e_any is more general, and will work with any kind of lock or mutex, whereas condi ti on_vari -
abl e requires that the lock passed to wai t is an instance of boost : : uni que_| ock<boost : : mut ex>. This enables condi -

ti on_vari abl e to make optimizations in some cases, based on the knowledge of the mutex type; condi ti on_vari abl e_any

41
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Class condition_variabl e

#i ncl ude <boost/thread/ condition_variabl e. hpp>
namespace boost

{

class condition_variabl e

{

public:
condition_variable();
~condi tion_variable();

void notify_one();
void notify all();

voi d wait (boost: :uni que_l ock<boost: : nut ex>& | ock);

t enpl at e<t ypenane predicate_type>
voi d wait (boost: :uni que_| ock<boost:: nutex>& | ock, predi cate_type predicate);

bool tined_wait (boost: : uni que_| ock<boost: : mutex>& | ock, boost::systemtine const& abs_tine);

t enpl at e<t ypenane duration_type>
bool tinmed_wait (boost:: unique_| ock<boost:: nutex>& | ock, duration_type const& rel _tine);

t enpl at e<t ypenane predi cate_type>
bool tinmed_wait (boost: :uni que_l ock<boost: : mutex>& | ock, boost::sys[1
temtime const& abs_tine, predicate_type predicate);
t enpl at e<t ypenane duration_type,typenane predicate_type>
bool tined_wait (boost: : unique_| ock<boost: :mutex>& | ock, duration_type const& rel _tine, prell
di cate_type predicate);
/'l backwards conpatibility
bool tined_wait (boost:: unique_| ock<boost:: nmutex>& | ock, boost: : xtime const& abs_tinme);
t enpl at e<t ypenane predicate_type>
bool timed_wait (boost::unique_| ock<boost:: nmutex>& | ock, boost:: xtinme const& abs_time, prel]

di cate_type predicate);

}

condi tion_variabl e()

Effects: Constructs an object of class condi ti on_vari abl e.
Throws: boost ::thread_resource_error if anerror occurs.
~condi ti on_vari abl e()

Precondition: All threads waiting on *t hi s have been notified by acalltonoti fy_oneornotify_al | (though the respective
callstowai t orti med_wait need not have returned).

Effects: Destroys the object.
Throws: Nothing.
voi d notify_one()

Effects: If any threads are currently blocked waitingon*t hi s inacall towai t orti med_wai t, unblocks one of those threads.

42

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Nothing.

Throws:

void notify_all ()
If any threads are currently blocked waitingon*t hi s inacall towai t orti med_wai t, unblocks all of those threads.

Effects:
Nothing.

Throws:
I ock is locked by the current thread, and either no other thread is currently waiting on *t hi s, or the execution
of the nut ex() member function on the | ock objects supplied in the calls to wai t or ti med_wai t inall

the threads currently waiting on *t hi s would return the same value as| ock- >nut ex() for this call towai t .

voi d wait (boost: : unique_| ock<boost: : mut ex>& | ock)

Precondition:
Atomically call | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
calltot hi s->notify_one() orthis->notify_all (), orspuriously. When the thread is unblocked (for
whatever reason), the lock is reacquired by invoking | ock. | ock() before the call towai t returns. The lock

is also reacquired by invoking | ock. | ock() if the function exits with an exception.

| ock is locked by the current thread.
boost : :thread_resource_error if an error occurs. boost : : t hread_i nt err upt ed if the wait was

interrupted by a call to i nt er rupt () on the boost : : t hr ead object associated with the current thread of

t enpl at e<t ypenane predi cate_type> void wai t (boost:: uni que_| ock<boost:: mutex>& | ock, predicate_type

bool
Precondition:
call to

Effects:
Postcondition:
Throws:
execution.
pred)
Effects: As-if
while(!pred())
{
wai t (1 ock);
}
ti med_wait (boost::uni que_| ock<boost:: nutex>& | ock, boost::systemtine const& abs_tine)
I ock is locked by the current thread, and either no other thread is currently waiting on *t hi s, or the execution
of the nut ex() member function on the | ock objects supplied in the calls to wai t orti med_wai t in all
the threads currently waiting on *t hi s would return the same value as| ock- >nut ex() for this call towai t .
Atomically call | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
this->notify_one() or this->notify_ all(), when the time as reported by
boost : : get _system ti me() would be equal to or later than the specified abs_t i me, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by invoking | ock. | ock() before the
call towai t returns. The lock is also reacquired by invoking | ock. | ock() if the function exits with an ex-

Effects:
ception.
f al se if the call is returning because the time specified by abs_t i me was reached, t r ue otherwise.

I ock is locked by the current thread.
boost::thread_resource_error if an error occurs. boost : : t hread_i nt errupt ed if the wait was

Returns:
httpo://www.renderx.com/

Postcondition:
execution.

interrupted by a call to i nt er rupt () on the boost : : t hr ead object associated with the current thread of
43

Throws:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

t enpl at e<t ypenane duration_type> bool tined_wait(boost:: unique_| ock<boost::nutex>& | ock, duration_type

const& rel _tine)

Precondition:

Effects:

Returns:

Postcondition:

Throws:

N

Note

I ock is locked by the current thread, and either no other thread is currently waiting on *t hi s, or the execution
of the nut ex() member function on the | ock objects supplied in the calls to wai t orti med_wai t inall
the threads currently waiting on *t hi s would return the same value as| ock- >nut ex() for this call towai t .

Atomically call | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
calltot hi s->notify_one() orthis->notify_all(),afterthe period of time indicated by therel _ti me
argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), the lock is reacquired
by invoking | ock. | ock() before the call to wait returns. The lock is also reacquired by invoking
I ock. | ock() if the function exits with an exception.

f al se if the call is returning because the time period specified by r el _ti me has elapsed, t r ue otherwise.
| ock is locked by the current thread.

boost::thread_resource_error if an error occurs. boost : : t hread_i nt err upt ed if the wait was
interrupted by a call to i nt er rupt () on the boost : : t hr ead object associated with the current thread of
execution.

The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred
in most cases.

t enpl at e<t ypenane predi cate_type> bool tined_wait (boost::unique_|l ock<boost:: nmutex>& | ock,
boost::systemtinme const& abs_tinme, predicate_type pred)

Effects:

As-if

while(!pred())
{

}

if(!'tinmed wait(lock,abs tinme))

{
}

return pred();

return true;

44

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Class condition_variabl e_any

#i ncl ude <boost/thread/ condition_variabl e. hpp>

namespace boost

{
cl ass condition_variabl e_any
{
public:
condi tion_variabl e_any();
~condi ti on_vari abl e_any();
void notify_one();
void notify_all();
t enpl at e<t ypenane | ock_t ype>
void wait(lock_type& | ock);
t enpl at e<t ypenane | ock_t ype, t ypenane predicate_type>
void wait(lock_type& | ock, predi cate_type predicate);
t enpl at e<t ypenane | ock_t ype>
bool tinmed_wait(lock_type& | ock, boost::systemtinme const& abs_tine);
t enpl at e<t ypenane | ock_type, typenanme duration_type>
bool tinmed_wait(lock_type& |ock,duration_type const& rel _tinme);
t enpl at e<t ypenane | ock_type, t ypenane predicate_type>
bool tined_wait(lock_type& | ock, boost::systemtime const& abs_time, predicate_type predicl[1
ate);
t enpl at e<t ypenane | ock_type, t ypenanme duration_type,typenane predicate_type>
bool timed_wait(lock_type& | ock, duration_type const& rel _tine, predicate_type predicate);
/'l backwards conpatibility
t enpl at e<t ypenane | ock_t ype>
bool tinmed_wait(lock_type>& | ock, boost::xtinme const& abs_tine);
t enpl at e<t ypenane | ock_t ype, t ypenane predicate_type>
bool tined_wait(lock_type& | ock, boost::xtime const& abs_time, predi cate_type predicate);
b
}

condi tion_variabl e_any()

Effects: Constructs an object of class condi ti on_vari abl e_any.
Throws: boost ::thread_resource_error if anerror occurs.
~condi ti on_vari abl e_any()

Precondition: All threads waiting on *t hi s have been notified by acalltonoti fy_oneornotify_al | (though the respective
callstowai t orti med_wait need not have returned).

Effects: Destroys the object.

Throws: Nothing.

45

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

void notify_one()

Effects: If any threads are currently blocked waitingon *t hi s inacall towai t orti med_wai t , unblocks one of those threads.
Throws: Nothing.

void notify_all ()

Effects: If any threads are currently blocked waiting on*t hi s inacall towai t orti med_wai t , unblocks all of those threads.
Throws: Nothing.

tenpl at e<typenane | ock_type> void wait (Il ock_type& | ock)

Effects: Atomically call | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
calltot hi s->notify_one() orthis->notify_all (), orspuriously. When the thread is unblocked (for
whatever reason), the lock is reacquired by invoking | ock. | ock() before the call towai t returns. The lock
is also reacquired by invoking | ock. | ock() if the function exits with an exception.

Postcondition: | ock is locked by the current thread.

Throws: boost: :thread_resource_error if an error occurs. boost : : t hread_i nt er r upt ed if the wait was
interrupted by a call to i nt er rupt () on the boost : : t hr ead object associated with the current thread of
execution.

t enpl at e<t ypenane | ock_type, typenane predicate_type> void wait(lock _type& | ock, predicate_type
pred)

Effects: As-if

while(!pred())
{

}

wai t (1 ock);

tenpl at e<t ypenane | ock_type> bool tinmed_wait(lock type& |ock, boost::systemtine const& abs_tine)

Effects: Atomically call | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify _one() or this->notify_ all(), when the time as reported by
boost : : get _system ti me() would be equal to or later than the specified abs_t i me, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by invoking | ock. | ock() before the
call towai t returns. The lock is also reacquired by invoking | ock. | ock() if the function exits with an ex-

ception.

Returns: f al se if the call is returning because the time specified by abs_t i me was reached, t r ue otherwise.

Postcondition: I ock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost : : t hread_i nt er rupt ed if the wait was
interrupted by a call to i nt er rupt () on the boost : : t hr ead object associated with the current thread of
execution.

t enpl at e<t ypenane | ock_t ype, typenane duration_type> bool tined_wait(lock_type& | ock,duration_type
const& rel _tine)

Effects: Atomically call | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
calltot hi s->notify_one() orthis->notify_all (),afterthe period of time indicated by therel _ti me

46

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), the lock is reacquired
by invoking | ock. | ock() before the call to wait returns. The lock is also reacquired by invoking
I ock. | ock() if the function exits with an exception.

Returns: f al se if the call is returning because the time period specified by r el _ti me has elapsed, t r ue otherwise.

Postcondition: | ock is locked by the current thread.

Throws: boost : : thread_resource_error if an error occurs. boost : : t hread_i nt err upt ed if the wait was
interrupted by a call to i nt er rupt () on the boost : : t hr ead object associated with the current thread of
execution.

g Note
The duration overload of timed_wiait is difficult to use correctly. The overload taking a predicate should be preferred
in most cases.

t enpl at e<t ypenane | ock_type, typenane predicate_type> bool tined_wait(lock_type& | ock, boost::sys-
temtime const& abs_tinme, predicate_type pred)

Effects: As-if

while(!pred())
{

if(!'tinmed_wait(lock, abs_tine))

{
}

return pred();

}

return true;

Typedef condition

#i ncl ude <boost/thread/ condition. hpp>

t ypedef condition_variabl e_any condition;

The typedef condi t i on is provided for backwards compatibility with previous boost releases.

One-time Initialization

boost : : cal | _once provides a mechanism for ensuring that an initialization routine is run exactly once without data races or
deadlocks.

Typedef once_fiag

#i ncl ude <boost/thread/ once. hpp>

typedef platform specific-type once_fl ag;
#define BOOST_ONCE_INIT platformspecific-initializer

Objects of type boost : : once_f | ag shall be initialized with BOOST_ONCE_I NI T:

47

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

boost::once_flag f=BOOST_ONCE_I NI T;

Non-member function cal 1 _once

#i ncl ude <boost/thread/ once. hpp>
t enpl at e<t ypenane Cal | abl e>
void call _once(once_flag& flag, Cal |l abl e func);

Requires:

Effects:

Cal | abl e is CopyConst ruct i bl e. Copying f unc shall have no side effects, and the effect of calling

the copy shall be equivalent to calling the original.
Calls to cal | _once on the same once_f | ag object are serialized. If there has been no prior effective

cal | _once on the same once_f | ag object, the argument f unc (or a copy thereof) is called as-if by in-
voking f unc(), and the invocation of cal | _once is effective if and only if f unc() returns without ex-

ception. If an exception is thrown, the exception is propagated to the caller. If there has been a prior effective

cal | _once on the same once_f | ag object, the cal | _once returns without invoking f unc.
The completion of an effective cal | _once invocation on a once_f | ag object, synchronizes with all

subsequent cal | _once invocations on the same once_f | ag object.

t hr ead_r esour ce_er r or when the effects cannot be achieved. or any exception propagated from f unc.
The function passed to cal | _once must not also call cal | _once passing the same once_f | ag object.

This may cause deadlock, or invoking the passed function a second time. The alternative is to allow the

Synchronization
second call to return immediately, but that assumes the code knows it has been called recursively, and can

proceed even though the call to cal | _once didn't actually call the function, in which case it could also

Throws:

Note:

avoid calling cal | _once recursively.
void call _once(void (*func)(),once_flag& flag);
This second overload is provided for backwards compatibility. The effects of cal | _once(func, f1 ag) shall be the same as those

of cal | _once(fl ag, func).

Barriers

A barrier is a simple concept. Also known as a rendezvous, it is a synchronization point between multiple threads. The barrier is

configured for a particular number of threads (n), and as threads reach the barrier they must wait until all n threads have arrived.
Once the n-th thread has reached the barrier, all the waiting threads can proceed, and the barrier is reset.

Class varrier
#i ncl ude <boost/thread/ barrier. hpp>

httpo://www.renderx.com/

cl ass barrier
{
public:
barri er(unsigned int count);
~barrier();
bool wait();
b
Instances of boost : : barri er are not copyable or movable
48

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Constructor

barrier(unsigned int count);

Effects: Construct a barrier for count threads.
Throws: boost: :thread_resource_error if anerror occurs.
Destructor
~barrier();
Precondition: No threads are waiting on *t hi s.
Effects: Destroys *t hi s.
Throws: Nothing.

Member function wai t

bool wait();

Effects: Block until count threads have called wai t on *t hi s. When the count -th thread calls wai t , all waiting threads are
unblocked, and the barrier is reset.

Returns: t r ue for exactly one thread from each batch of waiting threads, f al se otherwise.
Throws: boost: :thread_resource_error if anerror occurs.

Futures

Overview

The futures library provides a means of handling synchronous future values, whether those values are generated by another thread,
or on a single thread in response to external stimuli, or on-demand.

This is done through the provision of four class templates: boost : : uni que_f ut ur e and boost : : shar ed_f ut ur e which are
used to retrieve the asynchronous results, and boost : : promni se and boost : : packaged_t ask which are used to generate the
asynchronous results.

An instance of boost : : uni que_f ut ur e holds the one and only reference to a result. Ownership can be transferred between instances
using the move constructor or move-assignment operator, but at most one instance holds a reference to a given asynchronous result.
When the result is ready, it is returned from boost : : uni que_f ut ur e<R>: : get () by rvalue-reference to allow the result to be
moved or copied as appropriate for the type.

On the other hand, many instances of boost : : shar ed_f ut ur e may reference the same result. Instances can be freely copied and
assigned, and boost : : shar ed_f ut ure<R>: : get () returns a const reference so that multiple calls to boost : : shared_f u-
t ur e<R>: : get () are safe. You can move an instance of boost : : uni que_f ut ur e into an instance of boost : : shared_f ut ure,
thus transferring ownership of the associated asynchronous result, but not vice-versa.

You can wait for futures either individually or with one of the boost : : wai t _for_any() andboost::wait_for_all () functions.

Creating asynchronous values

You can set the value in a future with either a boost : : promni se or a boost : : packaged_t ask. A boost : : packaged_t ask is
a callable object that wraps a function or callable object. When the packaged task is invoked, it invokes the contained function in
turn, and populates a future with the return value. This is an answer to the perennial question: "how do I return a value from a thread?":

49

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

package the function you wish to run as aboost : : packaged_t ask and pass the packaged task to the thread constructor. The future

retrieved from the packaged task can then be used to obtain the return value. If the function throws an exception, that is stored in the

future in place of the return value.

int calculate_the_answer_to_l|ife_the_universe_and_everything()

{
}

return 42;

boost : : packaged_t ask<i nt> pt(cal cul ate_the_answer_to_l|ife_the_universe_and_everything);
boost: :unique_future<int> fi=pt.get_future();

boost::thread task(boost::move(pt)); // launch task on a thread
fi.wait(); // wait for it to finish

assert(fi.is_ready());

assert (fi.has_value());

assert(!fi.has_exception());

assert(fi.get_state()==boost::future_state::ready);
(

fi
assert (fi.get()==42);

Aboost : : proni se isabit more low level: it just provides explicit functions to store a value or an exception in the associated future.
A promise can therefore be used where the value may come from more than one possible source, or where a single operation may

produce multiple values.

boost: : prom se<int> pi;
boost: :unique_future<int> fi;
fi=pi.get_future();

pi . set_val ue(42);

assert(fi.is_ready());

assert (fi.has_value());

assert (! fi.has_exception());
assert(fi.get_state()==boost::future_state::ready);
assert (fi.get()==42);

Wait Callbacks and Lazy Futures

Both boost : : proni se and boost : : packaged_t ask support wait callbacks that are invoked when a thread blocks in a call to
wai t () ortimed_wait () on a future that is waiting for the result from the boost : : promni se or boost : : packaged_t ask, in
the thread that is doing the waiting. These can be set using the set _wai t _cal | back() member function on the boost : : pr oni se
or boost : : packaged_t ask in question.

This allows lazy futures where the result is not actually computed until it is needed by some thread. In the example below, the call
tof. get () invokesthe callback i nvoke_l azy_t ask, which runs the task to set the value. If you remove the call to f . get (), the
task is not ever run.

50

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Thread

int calculate_the_answer_to_|ife_the_universe_and_everything()

{
return 42;
}
voi d i nvoke_l azy_t ask(boost: : packaged_t ask<i nt >& t ask)
{
try
{
task();
}
catch(boost::task_al ready_started&)
{}
}
int main()
{
boost : : packaged_t ask<i nt> task(cal cul ate_the_answer_to_life_the_universe_and_everything);
task. set _wait_cal |l back(invoke_l azy_task);
boost: :unique_future<int> f(task.get _future());
assert (f.get()==42);
}

Futures Reference

state enum

nanmespace future_state

{
}

enum state {uninitialized, waiting, ready};

uni que_future class template

tenpl ate <typenane R>
cl ass uni que_future

{

uni que_future(unique_future & rhs);// = delete;

uni que_future& operator=(unique_future& rhs);// = delete;
publi c:

typedef future_state::state state;

uni que_future();
~uni que_future();

/1l nove support
uni que_future(uni que_future && other);
uni que_f uture& operator=(uni que_future && other);

voi d swap(uni que_future& other);

/'l retrieving the val ue
R&& get () ;

/'l functions to check state
state get_state() const;
bool is_ready() const;

bool has_exception() const;

51

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

bool has_val ue() const;

/1l waiting for the result to be ready

void wait() const;

t enpl at e<t ypenane Duration>

bool tined_wait(Duration const& rel _tine) const;

bool tined_wait_until (boost::systemtinme const& abs_tine) const;

I

Default Constructor

uni que_future();

Effects:

Postconditions:

Throws:

Destructor

~uni que_future();

Effects: Destroys *

Throws: Nothing.

Move Constructor

Constructs an uninitialized future.

thi s->i s_ready returnsf al se.t hi s->get _state() returnsboost:: future_state::uninitial-
i zed.

Nothing.

t his.

uni que_future(uni que_future && other);

Effects:

Postconditions:

Throws:

Notes:

Constructs a new future, and transfers ownership of the asynchronous result associated with ot her to
*this.

t hi s->get _st at e() returns the value of ot her - >get _st at e() priortothe call. ot her - >get _st at e()
returnsboost : : future_state: :uninitialized.Ifot her wasassociated with an asynchronous result,
that result is now associated with *t hi s. ot her is not associated with any asynchronous result.

Nothing.

If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Move Assignment Operator

uni que_f uture& operator=(uni que_future && other);

Effects:

Postconditions:

Throws:

Transfers ownership of the asynchronous result associated with ot her to *t hi s.

t hi s- >get _st at e() returnsthe value of ot her - >get _st at e() priortothe call. ot her - >get _st at e()
returnsboost : : future_state: :uninitialized.Ifot her wasassociated with an asynchronous result,
that result is now associated with *t hi s. ot her is not associated with any asynchronous result. If *t hi s
was associated with an asynchronous result prior to the call, that result no longer has an associated
boost : : uni que_f ut ur e instance.

Nothing.

52

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread
If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Notes:

Member function swap()
t hi s- >get _st at e() returnsthe value of ot her - >get _st at e() priortothecall. ot her - >get _st at e()

Swaps ownership of the asynchronous results associated with ot her and *t hi s.
returns the value of t hi s- >get _st at e() prior to the call. If ot her was associated with an asynchronous
result, that result is now associated with *t hi s, otherwise *t hi s has no associated result. If *t hi s was

voi d swap(uni que_future & other);
associated with an asynchronous result, that result is now associated with ot her , otherwise ot her has no

Effects:
Postconditions:
associated result.
Throws: Nothing.
Member function get ()
R&& get () ;
R& uni que_future<R&>: :get();
voi d uni que_future<voi d>::get();
Effects: If *t hi s is associated with an asynchronous result, waits until the result is ready as-if by a call to
boost : : uni que_f ut ure<R>: : wai t (), and retrieves the result (whether that is a value or an exception).
Returns: If the result type Ris a reference, returns the stored reference. If Ris voi d, there is no return value. Otherwise,
returns an rvalue-reference to the value stored in the asynchronous result.
Postconditions: this->is_ready() returnstrue.thi s->get_state() returns boost:: future_state::ready.
Throws: boost::future_uninitialized if *this is not associated with an asynchronous result.
boost : : thread_i nt er rupt ed if the result associated with *t hi s is not ready at the point of the call,
and the current thread is interrupted. Any exception stored in the asynchronous result in place of a value.
Notes: get () is an interruption point.
Member function wai t ()
void wait();
Effects: If *t hi s is associated with an asynchronous result, waits until the result is ready. If the result is not ready
on entry, and the result has a wait callback set, that callback is invoked prior to waiting.
Throws; boost::future_uninitialized if *this is not associated with an asynchronous result.
boost : : thread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the call,
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback is called.
this->is_ready() returnstrue.thi s->get _state() returns boost:: future_state::ready.
wai t () is an interruption point.

Postconditions:

Notes:
53
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

is not associated with an asynchronous result.

Member function ti med_wai t ()
true if *t hi s is associated with an asynchronous result, and that result is ready before the specified time

if *this

If *t hi s is associated with an asynchronous result, waits until the result is ready, or the time specified by
If this call returned t r ue, then t hi s->i s_ready() returns true and t hi s->get _state() returns

wai t _dur ati on has elapsed. If the result is not ready on entry, and the result has a wait callback set, that

t enpl at e<t ypenane Duration>

timed _wait(Duration const& wait_duration);
callback is invoked prior to waiting.
boost: :thread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the call,
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback is called.

bool

Effects:
has elapsed, f al se otherwise.

boost::future uninitialized

Returns:

Throws:

boost::future_state::ready.
timed_wait () isan interruption point. Dur at i on must be a type that meets the Boost.DateTime time

Postconditions:

Notes:

*this

Member function ti med_wai t ()

duration requirements.
If *t hi s is associated with an asynchronous result, waits until the result is ready, or the time point specified
if

by wai t _ti neout has passed. If the result is not ready on entry, and the result has a wait callback set, that

bool tinmed_wait(boost::systemtine const& wait_tineout);
callback is invoked prior to waiting.
true if *t hi s is associated with an asynchronous result, and that result is ready before the specified time
is not associated with an asynchronous result.

Effects:

boost::future uninitialized
boost : : t hread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the call,

Returns:
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback is called.

has passed, f al se otherwise.
If this call returned t r ue, then t hi s->i s_ready() returns true and t hi s->get _state() returns

Throws:
boost::future_state::ready.

timed_wait () isan interruption point.

Postconditions
true if *t hi s is associated with an asynchronous result, and that result is ready for retrieval, f al se otherwise.

Notes:
Member function i s_ready()
bool is_ready();
Effects: Checks to see if the asynchronous result associated with *t hi s is set.
Returns:
Throws: Nothing.

Member function has_val ue()
bool has_val ue();

Effects: Checks to see if the asynchronous result associated with *t hi s is set with a value rather than an exception.

54
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Returns: true if *t hi s is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
value, f al se otherwise.

Throws: Nothing.

Member function has_excepti on()

bool has_exception();

Effects: Checks to see if the asynchronous result associated with *t hi s is set with an exception rather than a value.

Returns: true if *t hi s is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
exception, f al se otherwise.

Throws: Nothing.

Member function get _state()

future_state::state get_state();

Effects: Determine the state of the asynchronous result associated with *t hi s, if any.

Returns: boost::future_state::uninitializedif*this isnotassociated with an asynchronous result. boost : : f u-
ture_state::ready if the asynchronous result associated with *this is ready for retrieval, boost: : fu-
ture_state::waiting otherwise.

Throws: Nothing.

55

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Thread

shared_future class template

tenpl ate <typenane R>
class shared future

{
publi c:
typedef future_state::state state;
shared future();
~shared future();
/'l copy support
shared future(shared future const& other);
shared_f uture& operator=(shared_future const& other);
/'l nove support
shared future(shared future && other);
shared_f ut ure(uni que_future<R> && other);
shared_future& operator=(shared_future && other);
shared_f uture& operator=(uni que_f uture<R> && ot her);
voi d swap(shared_future& other);
/'l retrieving the val ue
R get();
/1 functions to check state, and wait for ready
state get_state() const;
bool is_ready() const;
bool has_exception() const;
bool has_val ue() const;
/1 waiting for the result to be ready
void wait() const;
t enpl at e<t ypenane Durati on>
bool tinmed wait(Duration const& rel tinme) const;
bool tinmed_wait_until (boost::systemtime const& abs_tine) const;
b

Default Constructor

shared_future();

Effects: Constructs an uninitialized future.

Postconditions: thi s->i s_readyreturnsfal se.t hi s->get _state() returnsboost::future_state::uninitial-
i zed.

Throws: Nothing.

Member function get ()

const R& get();

Effects: If *this is associated with an asynchronous result, waits until the result is ready as-if by a call to
boost : : shared_future<R>::wait(),andreturnsaconst reference to the result.

Returns: If the result type Ris a reference, returns the stored reference. If Ris voi d, there is no return value. Otherwise, returns
a const reference to the value stored in the asynchronous result.

56

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread
boost::future_uninitializedif*this isnotassociated with an asynchronous result. boost : : t hread_i n-

t er r upt ed if the result associated with * t hi s is not ready at the point of the call, and the current thread is interrupted.

If *t hi s is associated with an asynchronous result, waits until the result is ready. If the result is not ready
is not associated with an asynchronous result.

Throws:

get () is an interruption point.
*this

on entry, and the result has a wait callback set, that callback is invoked prior to waiting.
if
boost : : thread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the call,
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback is called.

this->is_ready() returnstrue.thi s->get_state() returns boost:: future_state::ready.

Returns:

Notes:
Member function wai t ()
void wait();
Effects:
Throws: boost::future_uninitialized
Postconditions:
Notes: wai t () is an interruption point.
Member function ti ned_wai t ()
t enpl at e<t ypename Durati on>
bool tinmed_wait(Duration const& wait_duration);
Effects: If *t hi s is associated with an asynchronous result, waits until the result is ready, or the time specified by
wai t _dur ati on has elapsed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.
true if *t hi s is associated with an asynchronous result, and that result is ready before the specified time
has elapsed, f al se otherwise.
boost::future_uninitialized if *this is not associated with an asynchronous result.
boost : : thread_i nt errupted if the result associated with *t hi s is not ready at the point of the call,
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback is called.
If this call returned t rue, then t hi s->i s_ready() returns true and t hi s->get _state() returns

Throws:
boost::future_state::ready.
timed_wait () isan interruption point. Dur at i on must be a type that meets the Boost.DateTime time

Postconditions:
duration requirements.
If *t hi s is associated with an asynchronous result, waits until the result is ready, or the time point specified

by wai t _ti neout has passed. If the result is not ready on entry, and the result has a wait callback set, that

timed_wait(boost::systemtinme const& wait_timeout);
true if *t hi s is associated with an asynchronous result, and that result is ready before the specified time
is not associated with an asynchronous result.

Notes:
Member function ti ned_wai t ()

bool

Effects:
callback is invoked prior to waiting.
Returns:
has passed, f al se otherwise.
boost::future uninitialized if *this
boost: : thread_i nt errupted if the result associated with *t hi s is not ready at the point of the call,
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback is called.
57
httpo://www.renderx.com/

Throws:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Postconditions: If this call returned t rue, then t hi s->is_ready() returns true and thi s->get _state() returns
boost::future_state::ready.

Notes: timed_wait () isan interruption point.

Member function i s_ready()

bool is_ready();

Effects: Checks to see if the asynchronous result associated with *t hi s is set.
Returns: true if *t hi s is associated with an asynchronous result, and that result is ready for retrieval, f al se otherwise.
Throws: Nothing.

Member function has_val ue()

bool has_val ue();

Effects: Checks to see if the asynchronous result associated with *t hi s is set with a value rather than an exception.

Returns: true if *t hi s is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
value, f al se otherwise.

Throws: Nothing.

Member function has_excepti on()

bool has_exception();

Effects: Checks to see if the asynchronous result associated with *t hi s is set with an exception rather than a value.

Returns: true if *t hi s is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
exception, f al se otherwise.

Throws; Nothing.

Member function get _state()

future_state::state get_state();

Effects: Determine the state of the asynchronous result associated with *t hi s, if any.

Returns: boost::future_state::uninitializedif*this isnotassociated with an asynchronous result. boost : : f u-
ture_state::ready if the asynchronous result associated with *this is ready for retrieval, boost: : fu-
ture_state::waiting otherwise.

Throws: Nothing.

58

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

proni se class template

tenpl ate <typenane R>
cl ass prom se
{
prom se(promise & rhs);// = delete;
prom se & operator=(promse & rhs);// = delete;
public:
/'l template <class Allocator> explicit promnise(Allocator a);

prom se();
~prom se();

/1 Move support
prom se(pronise & rhs);
prom se & operator=(prom se&& rhs);

voi d swap(prom se& ot her);
/1 Result retrieval
uni que_future<R> get _future();

/1 Set the val ue

void set_value(R& r);

void set value(R&& r);

voi d set _exception(boost::exception_ptr e);

t enpl at e<t ypenane F>
void set_wait_call back(F f);

Default Constructor

prom se();
Effects: Constructs a new boost : : pr oni se with no associated result.
Throws: Nothing.

Move Constructor

prom se(prom se && other);

Effects: Constructs a new boost : : pr oni se, and transfers ownership of the result associated with ot her to *t hi s, leaving
ot her with no associated result.

Throws; Nothing.
Notes: If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Move Assignment Operator

prom se& operator=(prom se & other);

Effects: Transfers ownership of the result associated with ot her to *t hi s, leaving ot her with no associated result. If there
was already a result associated with *t hi s, and that result was not ready, sets any futures associated with that result
to ready with a boost : : br oken_pr oni se exception as the result.

Throws: Nothing.

59

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread
If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Notes:
Destructor

~prom se();
Destroys *t hi s. If there was a result associated with *t hi s, and that result is not ready, sets any futures associated

with that task to ready with a boost : : br oken_pr oni se exception as the result.

Effects:
Nothing.

Throws:
Member Function get _future()
uni que_future<R> get_future();

If *t hi s was not associated with a result, allocate storage for a new asynchronous result and associate it with *t hi s.
st d: : bad_al | oc if any memory necessary could not be allocated.

Returns a boost : : uni que_f ut ur e associated with the result associated with *t hi s.
boost::future_already_retrieved if the future associated with the task has already been retrieved.

Effects:

Throws:

Member Function set _val ue()
If *t hi s was not associated with a result, allocate storage for a new asynchronous result and associate it

with *t hi s. Store the value r in the asynchronous result associated with *t hi s. Any threads blocked
All futures waiting on the asynchronous result are ready and boost : : uni que_f ut ur e<R>: : has_val ue()

void set value(R&& r);
voi d set _value(const R& r);
voi d prom se<R&>::set_value(R& r);
voi d promni se<voi d>::set_val ue();
waiting for the asynchronous result are woken.
or boost : : shar ed_f ut ure<R>: : has_val ue() for those futures shall return t r ue.
boost:: prom se_al ready_satisfied if the result associated with *this is already ready.
st d: : bad_al | oc if the memory required for storage of the result cannot be allocated. Any exception

Effects:
thrown by the copy or move-constructor of R

Postconditions:
If *t hi s was not associated with a result, allocate storage for a new asynchronous result and associate it
with *t hi s. Store the exception e in the asynchronous result associated with *t hi s. Any threads blocked

voi d set_exception(boost::exception_ptr e)
waiting for the asynchronous result are woken.

Throws;
Effects:
All futures waiting on the asynchronous result are ready and boost : : uni que_f ut ur e<R>: : has_excep-
tion() orboost::shared_future<R>::has_exception() forthose futures shall returnt r ue.

Member Function set _excepti on()
boost:: promi se_al ready_satisfied if the result associated with *this is already ready

st d: : bad_al | oc if the memory required for storage of the result cannot be allocated.

Postconditions:

Throws:
60

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Member Function set _wai t _cal | back()

t enpl at e<t ypenane F>
void set_wait_call back(F f);

Preconditions:

Effects:

Throws:

The expression f (t) where t is a Ivalue of type boost : : packaged_t ask shall be well-formed. Invoking
a copy of f shall have the same effect as invoking f

Store a copy of f with the asynchronous result associated with *t hi s as a wait callback. This will replace
any existing wait callback store alongside that result. If a thread subsequently calls one of the wait functions
on a boost : : uni que_future or boost: : shared_f ut ure associated with this result, and the result is
not ready, f (*t hi s) shall be invoked.

std: : bad_al I oc if memory cannot be allocated for the required storage.

61

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Thread

packaged_t ask class template

t enpl at e<t ypenane R>
cl ass packaged_t ask
{
packaged_t ask(packaged_t ask&);// = del ete;
packaged_t ask& oper at or =(packaged_t ask&);// = del ete;

public:
/1l construction and destruction
tenpl ate <cl ass F>
explicit packaged_task(F const& f);

explicit packaged_task(R(*f)());

tenpl ate <cl ass F>
explicit packaged_task(F&& f);

/1 template <class F, class Allocator>

/'l explicit packaged_task(F const& f, Allocator a);
/1 template <class F, class Allocator>

/'l explicit packaged_task(F&& f, Allocator a);

~packaged_t ask()
{}

/1l nove support

packaged_t ask(packaged_t ask&& ot her) ;

packaged_t ask& oper at or =(packaged_t ask&& ot her);
voi d swap(packaged_t ask& ot her);

/'l result retrieval

uni que_future<R> get _future();

/1l execution
voi d operator()();

t enpl at e<t ypenane F>
void set_wait_call back(F f);

Task Constructor

t enpl at e<t ypenane F>
packaged_t ask(F const &f);

packaged task(R(*f)()):

t enpl at e<t ypenane F>
packaged_t ask(F&&f) ;

Preconditions: f () is avalid expression with a return type convertible to R. Invoking a copy of f shall behave the same as
invoking f .

Effects: Constructs a new boost : : packaged_t ask with a copy of f stored as the associated task.

Throws: Any exceptions thrown by the copy (or move) constructor of f . st d: : bad_al | oc if memory for the internal

data structures could not be allocated.

62

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Move Constructor
Constructs a new boost : : packaged_t ask, and transfers ownership of the task associated with ot her to *t hi s,

packaged_t ask(packaged_t ask && ot her);

leaving ot her with no associated task.

Effects:
Nothing.
If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Move Assignment Operator

Notes:
Transfers ownership of the task associated with ot her to *t hi s, leaving ot her with no associated task. If there was
If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Throws:
packaged_t ask& oper at or =(packaged_t ask && ot her);
already a task associated with *t hi s, and that task has not been invoked, sets any futures associated with that task to

ready with a boost : : br oken_pr oni se exception as the result.

Effects:

Throws:

Notes:

Destructor

Nothing.
~packaged_t ask();
Destroys *t hi s. If there was a task associated with *t hi s, and that task has not been invoked, sets any futures asso-

ciated with that task to ready with a boost : : br oken_pr oni se exception as the result.

Effects:
Nothing.

Throws;
Member Function get _future()

uni que_future<R> get_future();
Returns a boost : : uni que_f ut ur e associated with the result of the task associated with *t hi s.

boost : : task_noved if ownership of the task associated with *t hi s has been moved to another instance of
boost : : packaged_t ask.boost: : future_al ready_retri eved if the future associated with the task has already

Effects:
Throws:

been retrieved.
Member Function operat or () ()

Invoke the task associated with *t hi s and store the result in the corresponding future. If the task returns

normally, the return value is stored as the asynchronous result, otherwise the exception thrown is stored.
Any threads blocked waiting for the asynchronous result associated with this task are woken.

voi d operator()();
All futures waiting on the asynchronous result are ready

Effects:
httpo://www.renderx.com/

boost : : t ask_noved if ownership of the task associated with *t hi s has been moved to another instance
63

of boost : : packaged_t ask. boost : : t ask_al ready_st art ed if the task has already been invoked.

Postconditions:

Throws:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

Member Function set _wai t _cal | back()

t enpl at e<t ypenane F>
void set_wait_call back(F f);

Preconditions:

Effects:

Throws:

The expression f (t) where t is a Ivalue of type boost : : packaged_t ask shall be well-formed. Invoking
a copy of f shall have the same effect as invoking f

Store a copy of f with the task associated with *t hi s as a wait callback. This will replace any existing wait
callback store alongside that task. If a thread subsequently calls one of the wait functions on a
boost : : uni que_f ut ur e or boost : : shar ed_f ut ur e associated with this task, and the result of the task
is not ready, f (*t hi s) shall be invoked.

boost : : t ask_noved if ownership of the task associated with *t hi s has been moved to another instance
of boost : : packaged_t ask.

Non-member function wait_for_any()

t enpl at e<t ypenane Iterator>
Iterator wait_for_any(lterator begin, Iterator end);

t enpl at e<t ypenane F1,typenane F2>
unsi gned wait_for_any(Fl& f1, F2& f2);

t enpl at e<t ypenane F1,typenane F2,typenane F3>
unsi gned wait_for_any(Fl& f1, F2& f2, F3& f3);

t enpl at e<t ypenane F1,typenane F2,typenane F3,typenane F4>
unsi gned wait_for_any(Fl& f1, F2& f2, F3& f3, F4& f4);

t enpl at e<t ypenane F1,typenane F2,typenane F3,typenane F4,typenane F5>
unsi gned wait_for_any(Fl& f1, F2& f2, F3& f3, F4& f4, F5& f5);

Preconditions:

Effects:

Returns:

Throws:

Notes:

The types Fn shall be specializations of boost : : uni que_f ut ure or boost::shared_future, and
Iterator shall be a forward iterator with a value_type which is a specialization of
boost: : uni que_future orboost::shared_future.

Waits until at least one of the specified futures is ready.

The range-based overload returns an | t er at or identifying the first future in the range that was detected as
ready. The remaining overloads return the zero-based index of the first future that was detected as ready
(first parameter => 0, second parameter => 1, etc.).

boost : : thread_i nterrupted if the current thread is interrupted. Any exception thrown by the wait
callback associated with any of the futures being waited for. st d: : bad_al | oc if memory could not be al-
located for the internal wait structures.

wai t _for_any() isan interruption point.

64

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Non-member function wait_for_all ()
t enpl at e<t ypenane |terator>
void wait_for_all(lterator begin,lterator end);
t enpl at e<t ypenane F1,typenane F2>
void wait_for_all (Fl& f1, F2& f2);
t enpl at e<t ypenane F1,typenane F2,typename F3>
void wait_for_all (Fl& f1, F2& f2, F3& f3);
t enpl at e<t ypenanme F1,typename F2,typenane F3,typenane F4>
void wait_for_all (Fl& f1, F2& f2, F3& f3,F4& f4);
tenpl at e<t ypenane F1,typenane F2,typenane F3,typenane F4,typename F5>
void wait_for_all (F1& f1, F2& f2, F3& f3, F4& f4, F5& f5);
::shared_future, and
be a forward with a value_type which is a specialization of
boost: : uni que_futureorboost::shared_future.

The types Fn shall be specializations of boost : : uni que_f ut ure or boost
shall iterator

Iterator

Preconditions:
Waits until all of the specified futures are ready.
Any exceptions thrown by a call to wai t () on the specified futures.

wai t _for_all () isaninterruption point.

Notes:

Throws:
Thread Local Storage
Synopsis
Thread local storage allows multi-threaded applications to have a separate instance of a given data item for each thread. Where a

threaded application. One example is the C er r no variable, used for storing the error code related to functions from the Standard C
library. It is common practice (and required by POSIX) for compilers that support multi-threaded applications to provide a separate
instance of er r no for each thread, in order to avoid different threads competing to read or update the value.

Though compilers often provide this facility in the form of extensions to the declaration syntax (such as __decl spec(t hr ead) or

Effects:
single-threaded application would use static or global data, this could lead to contention, deadlock or data corruption in a multi-
__thread annotations on st at i ¢ or namespace-scope variable declarations), such support is non-portable, and is often limited in

some way, such as only supporting POD types.
Portable thread-local storage WIth boost: : t hread_specific_ptr
boost : : t hread_speci fi c_ptr provides a portable mechanism for thread-local storage that works on all compilers supported
by Boost.Thread. Each instance of boost : : t hr ead_speci fi c_pt r represents a pointer to an object (such as er r no) where each
thread must have a distinct value. The value for the current thread can be obtained using the get () member function, or by using
the * and - > pointer deference operators. Initially the pointer has a value of NULL in each thread, but the value for the current thread
If the value of the pointer for the current thread is changed using r eset () , then the previous value is destroyed by calling the cleanup
routine. Alternatively, the stored value can be reset to NULL and the prior value returned by calling the r el ease() member function,

can be set using the r eset () member function.

Cleanup at thread exit
65
httpo://www.renderx.com/

allowing the application to take back responsibility for destroying the object.
When a thread exits, the objects associated with each boost : : t hread_speci fi c_ptr instance are destroyed. By default, the
object pointed to by a pointer p is destroyed by invoking del ete p, but this can be overridden for a specific instance of
boost : : t hread_speci fi c_ptr by providing a cleanup routine to the constructor. In this case, the object is destroyed by invoking

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Thread

func(p) where f unc is the cleanup routine supplied to the constructor. The cleanup functions are called in an unspecified order.
If a cleanup routine sets the value of associated with an instance of boost : : t hr ead_speci fi c_pt r that has already been cleaned
up, that value is added to the cleanup list. Cleanup finishes when there are no outstanding instances of boost : : t hr ead_speci f -
i c_ptr with values.

CIaSS t hread_specific_ptr

#i ncl ude <boost/thread/tss. hpp>

tenpl ate <typenane T>
cl ass thread_specific_ptr

{
public:

thread_specific_ptr();
explicit thread_specific_ptr(void (*cleanup_function)(T*));
~t hread_specific_ptr();

T* get() const;
T* operator->() const;
T& operator*() const;

T* rel ease();
voi d reset (T* new_val ue=0);

thread_specific_ptr();

Requires:

Effects:

Throws:

del ete this->get () iswell-formed.

Constructat hread_speci fi c_ptr object for storing a pointer to an object of type T specific to each thread. The
default del et e-based cleanup function will be used to destroy any thread-local objects when r eset () is called, or
the thread exits.

boost: :thread_resource_error if anerror occurs.

explicit thread_specific_ptr(void (*cleanup_function)(T*));

Requires:

Effects:

Throws:

cl eanup_f unction(this->get()) does not throw any exceptions.

Constructat hr ead_speci fi c_ptr object for storing a pointer to an object of type T specific to each thread. The
supplied cl eanup_f unct i on will be used to destroy any thread-local objects whenr eset () is called, or the thread
exits.

boost: :thread_resource_error if anerror occurs.

~t hread_specific_ptr();

Effects:

Throws:

K

Callst hi s- >reset () to clean up the associated value for the current thread, and destroys *t hi s.

Nothing.

Note

Care needs to be taken to ensure that any threads still running after an instance of boost : : t hread_speci fic_ptr
has been destroyed do not call any member functions on that instance.

66

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

T* get() const;

Returns: The pointer associated with the current thread.

Throws: Nothing.

g Note
The initial value associated with an instance of boost : : t hread_speci fi c_ptr is NULL for each thread.

T* operator->() const;

Returns: t hi s->get ()

Throws: Nothing.

T& operator*() const;

Requires: t hi s- >get isnot NULL.
Returns: *(this->get())
Throws: Nothing.

voi d reset(T* new_val ue=0);

Effects:

Postcondition:

Throws:

T* rel ease();

Effects:

Postcondition:

Throws:

If this->get()!=new value and this->get() is non-NULL, invoke del ete this->get() or
cl eanup_function(this->get()) asappropriate. Store new_val ue as the pointer associated with the
current thread.

t hi s- >get () ==new_val ue

boost::thread_resource_error if anerror occurs.

Return t hi s- >get () and store NULL as the pointer associated with the current thread without invoking the
cleanup function.

t hi s->get () ==

Nothing.

Date and Time Requirements

As of Boost 1.35.0, the Boost.Thread library uses the Boost.Date_Time library for all operations that require a time out. These include

(but are not limited to):

* boost::this_thread::sleep()

* tinmed_join()
e tinmed_wait()

e timed_l ock()

render

67

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

For the overloads that accept an absolute time parameter, an object of type boost : : syst em ti ne is required. Typically, this will
be obtained by adding a duration to the current time, obtained with a call to boost : : get _system ti ne().e.g.

boost: : system time const timeout=boost::get_systemtinme() + boost::posix_time::mlliseconds(500);
extern bool done;

extern boost::mutex m

extern boost::condition_variabl e cond;

boost : : uni que_Il ock<boost: : mutex> | k(m;

whi | e(! done)
{
if(!cond. timed wait(lk,tinmeout))
{
throw "tinmed out";
}

For the overloads that accept a TimeDuration parameter, an object of any type that meets the Boost.Date_Time Time Duration re-
quirements can be used, e.g.

boost: :this_thread:: sl eep(boost::posix_time::mlliseconds(25));
boost:: mutex m
if(mtined_|l ock(boost::posix_tine::nanoseconds(100)))

{
}

/1

Typed ef systemtine
#i ncl ude <boost/thread/thread_tine. hpp>
t ypedef boost::posix_tinme::ptinme systemtine;
See the documentation for boost : : posi x_t i me: : pti me in the Boost.Date_Time library.

Non-member function get systemtine()

#i ncl ude <boost/thread/thread_tine. hpp>

systemtinme get_systemtine();

Returns: The current time.

Throws: Nothing.

Acknowledgments

The original implementation of Boost.Thread was written by William Kempf, with contributions from numerous others. This new
version initially grew out of an attempt to rewrite Boost.Thread to William Kempf's design with fresh code that could be released
under the Boost Software License. However, as the C++ Standards committee have been actively discussing standardizing a thread
library for C++, this library has evolved to reflect the proposals, whilst retaining as much backwards-compatibility as possible.

68

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Particular thanks must be given to Roland Schwarz, who contributed a lot of time and code to the original Boost.Thread library,
and who has been actively involved with the rewrite. The scheme for dividing the platform-specific implementations into separate
directories was devised by Roland, and his input has contributed greatly to improving the quality of the current implementation.

Thanks also must go to Peter Dimov, Howard Hinnant, Alexander Terekhov, Chris Thomasson and others for their comments on
the implementation details of the code.

69

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Thread
	Table of Contents
	Overview
	Changes since boost 1.40
	Thread Management
	Class thread
	Default Constructor
	Move Constructor
	Move assignment operator
	Thread Constructor
	Thread Constructor with arguments
	Thread Destructor
	Member function joinable()
	Member function join()
	Member function timed_join()
	Member function detach()
	Member function get_id()
	Member function interrupt()
	Static member function hardware_concurrency()
	Member function native_handle()
	operator==
	operator!=
	Static member function sleep()
	Static member function yield()
	Member function swap()
	Non-member function swap()
	Non-member function move()
	Class boost::thread::id
	Default constructor
	operator==
	operator!=
	operator<
	operator>
	operator>=
	operator>=
	Friend operator<<

	Namespace this_thread
	Non-member function get_id()
	Non-member function interruption_point()
	Non-member function interruption_requested()
	Non-member function interruption_enabled()
	Non-member function sleep()
	Non-member function yield()
	Class disable_interruption
	Constructor
	Destructor

	Class restore_interruption
	Constructor
	Destructor

	Non-member function template at_thread_exit()

	Class thread_group
	Constructor
	Destructor
	Member function create_thread()
	Member function add_thread()
	Member function remove_thread()
	Member function join_all()
	Member function interrupt_all()
	Member function size()

	Synchronization
	Mutex Concepts
	Lockable Concept
	void lock()
	bool try_lock()
	void unlock()

	TimedLockable Concept
	bool timed_lock(boost::system_time const& abs_time)
	template<typename DurationType> bool timed_lock(DurationType const& rel_time)

	SharedLockable Concept
	void lock_shared()
	bool try_lock_shared()
	bool timed_lock_shared(boost::system_time const& abs_time)
	void unlock_shared()

	UpgradeLockable Concept
	void lock_upgrade()
	void unlock_upgrade()
	void unlock_upgrade_and_lock()
	void unlock_upgrade_and_lock_shared()
	void unlock_and_lock_upgrade()

	Lock Types
	Class template lock_guard
	lock_guard(Lockable & m)
	lock_guard(Lockable & m,boost::adopt_lock_t)
	~lock_guard()

	Class template unique_lock
	unique_lock()
	unique_lock(Lockable & m)
	unique_lock(Lockable & m,boost::adopt_lock_t)
	unique_lock(Lockable & m,boost::defer_lock_t)
	unique_lock(Lockable & m,boost::try_to_lock_t)
	unique_lock(Lockable & m,boost::system_time const& abs_time)
	~unique_lock()
	bool owns_lock() const
	Lockable* mutex() const
	operator unspecified-bool-type() const
	bool operator!() const
	Lockable* release()

	Class template shared_lock
	shared_lock()
	shared_lock(Lockable & m)
	shared_lock(Lockable & m,boost::adopt_lock_t)
	shared_lock(Lockable & m,boost::defer_lock_t)
	shared_lock(Lockable & m,boost::try_to_lock_t)
	shared_lock(Lockable & m,boost::system_time const& abs_time)
	~shared_lock()
	bool owns_lock() const
	Lockable* mutex() const
	operator unspecified-bool-type() const
	bool operator!() const
	Lockable* release()

	Class template upgrade_lock
	Class template upgrade_to_unique_lock
	Mutex-specific class scoped_try_lock

	Lock functions
	Non-member function lock(Lockable1,Lockable2,...)
	Non-member function lock(begin,end)
	Non-member function try_lock(Lockable1,Lockable2,...)
	Non-member function try_lock(begin,end)

	Mutex Types
	Class mutex
	Member function native_handle()

	Typedef try_mutex
	Class timed_mutex
	Member function native_handle()

	Class recursive_mutex
	Member function native_handle()

	Typedef recursive_try_mutex
	Class recursive_timed_mutex
	Member function native_handle()

	Class shared_mutex

	Condition Variables
	Class condition_variable
	condition_variable()
	~condition_variable()
	void notify_one()
	void notify_all()
	void wait(boost::unique_lock<boost::mutex>& lock)
	template<typename predicate_type> void wait(boost::unique_lock<boost::mutex>& lock, predicate_type pred)
	bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time)
	template<typename duration_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time)
	template<typename predicate_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock, boost::system_time const& abs_time, predicate_type pred)

	Class condition_variable_any
	condition_variable_any()
	~condition_variable_any()
	void notify_one()
	void notify_all()
	template<typename lock_type> void wait(lock_type& lock)
	template<typename lock_type,typename predicate_type> void wait(lock_type& lock, predicate_type pred)
	template<typename lock_type> bool timed_wait(lock_type& lock,boost::system_time const& abs_time)
	template<typename lock_type,typename duration_type> bool timed_wait(lock_type& lock,duration_type const& rel_time)
	template<typename lock_type,typename predicate_type> bool timed_wait(lock_type& lock, boost::system_time const& abs_time, predicate_type pred)

	Typedef condition

	One-time Initialization
	Typedef once_flag
	Non-member function call_once

	Barriers
	Class barrier

	Futures
	Overview
	Creating asynchronous values
	Wait Callbacks and Lazy Futures
	Futures Reference
	state enum
	unique_future class template
	Default Constructor
	Destructor
	Move Constructor
	Move Assignment Operator
	Member function swap()
	Member function get()
	Member function wait()
	Member function timed_wait()
	Member function timed_wait()
	Member function is_ready()
	Member function has_value()
	Member function has_exception()
	Member function get_state()

	shared_future class template
	Default Constructor
	Member function get()
	Member function wait()
	Member function timed_wait()
	Member function timed_wait()
	Member function is_ready()
	Member function has_value()
	Member function has_exception()
	Member function get_state()

	promise class template
	Default Constructor
	Move Constructor
	Move Assignment Operator
	Destructor
	Member Function get_future()
	Member Function set_value()
	Member Function set_exception()
	Member Function set_wait_callback()

	packaged_task class template
	Task Constructor
	Move Constructor
	Move Assignment Operator
	Destructor
	Member Function get_future()
	Member Function operator()()
	Member Function set_wait_callback()

	Non-member function wait_for_any()
	Non-member function wait_for_all()

	Thread Local Storage
	Class thread_specific_ptr
	thread_specific_ptr();
	explicit thread_specific_ptr(void (*cleanup_function)(T*));
	~thread_specific_ptr();
	T* get() const;
	T* operator->() const;
	T& operator*() const;
	void reset(T* new_value=0);
	T* release();

	Date and Time Requirements
	Typedef system_time
	Non-member function get_system_time()

	Acknowledgments

