Boost.Any

Kevlin Henney
Copyright © 2001 Kevlin Henney
Distributed under the Boost Software License, Version 1.0. (See accompanying file LI CENSE_1_0. t xt or copy at ht-

tp://www.boost.org/LICENSE_1_0.txt)
Table of Contents

Introduction
Examples
ValueType requirements
are truly variable, accommodating values of many other more specific types rather than C++'s normal strict and static types. We can

Reference

Header <boost/any.hpp>
Acknowledgements
Converting types that can hold one of a number of possible value types, e.g. i nt and st ri ng, and freely convert between them,
for instance interpreting 5 as "5" or vice-versa. Such types are common in scripting and other interpreted languages.

Introduction

There are times when a generic (in the sense of general as opposed to template-based programming) type is needed: variables that

distinguish three basic kinds of generic type:
boost : : | exi cal _cast supports such conversion functionality.
makes them safe, generic containers of single values, with no scope for surprises from ambiguous conversions.
Indiscriminate types that can refer to anything but are oblivious to the actual underlying type, entrusting all forms of access and
interpretation to the programmer. This niche is dominated by voi d *, which offers plenty of scope for surprising, undefined be-
The boost : : any class (based on the class of the same name described in "Valued Conversions” by Kevlin Henney, C++ Report

Discriminated types that contain values of different types but do not attempt conversion between them, i.e. 5 is held strictly as an
i nt and is not implicitly convertible either to " 5" or to 5. 0. Their indifference to interpretation but awareness of type effectively

havior.
extraction of that value strictly against its type. A similar design, offering more appropriate operators, can be used for a generalized

12(7), July/August 2000) is a variant value type based on the second category. It supports copying of any value type and safe checked
function adaptor, any_f unct i on, a generalized iterator adaptor, any_i t er at or , and other object types that need uniform runtime
treatment but support only compile-time template parameter conformance.

Examples

The following code demonstrates the syntax for using implicit conversions to and copying of any objects:

httpo://www.renderx.com/

render

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.two-sdg.demon.co.uk/curbralan/papers/ValuedConversions.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.Any

#include <list>
#i ncl ude <boost/any. hpp>

usi ng boost::any_cast;
typedef std::list<boost::any> nany;

voi d append_i nt (many & val ues, int val ue)

{
boost::any to_append = val ue;
val ues. push_back(t o_append);
}
voi d append_string(many & val ues, const std::string & val ue)
{
val ues. push_back(val ue);
}
voi d append_char _ptr(many & val ues, const char * val ue)
{
val ues. push_back(val ue);
}
voi d append_any(nmany & val ues, const boost::any & val ue)
{
val ues. push_back(val ue);
}
voi d append_not hi ng(rmany & val ues)
{
val ues. push_back(boost::any());
}

The following predicates follow on from the previous definitions and demonstrate the use of queries on any objects:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Any

bool is_enmpty(const boost::any & operand)

{
return operand. enpty();
}
bool is_int(const boost::any & operand)
{
return operand.type() == typeid(int);
}
bool is_char_ptr(const boost::any & operand)
{
try
{
any_cast <const char *>(operand);
return true
}
catch(const boost::bad_any_cast &)
{
return fal se;
}
}
bool is_string(const boost::any & operand)
{
return any_cast<std::string>(&operand);
}
void count_all (nmany & val ues, std::ostream & out)
{
out << "#enpty == "
<< std::count_if(val ues. begin(), values.end(), is_enpty) << std::endl
out << "#int =="
<< std::count_if(val ues.begin(), values.end(), is_int) << std::endl
out << "#const char * =="
<< std::count_if(val ues. begin(), values.end(), is_char_ptr) << std::endl
out << "#string =="
<< std::count_if(val ues. begin(), values.end(), is_string) << std::endl
}

The following type, patterned after the OMG's Property Service, defines name-value pairs for arbitrary value types:

struct property

{
property();
property(const std::string & const boost::any &;
std::string nane;
boost::any val ue;
b

typedef std::list<property> properties

The following base class demonstrates one approach to runtime polymorphism based callbacks that also require arbitrary argument
types. The absence of virtual member templates requires that different solutions have different trade-offs in terms of efficiency,
safety, and generality. Using a checked variant type offers one approach:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Any

=0

cl ass consuner
void notify(const any &)

{
publi c:
vi rtual

Values are strongly informational objects for which identity is not significant, i.e. the focus is principally on their state content and
any behavior organized around that. Another distinguishing feature of values is their granularity: normally fine-grained objects rep-

resenting simple concepts in the system such as quantities.

Reference
ValueType requirements
As the emphasis of a value lies in its state not its identity, values can be copied and typically assigned one to another, requiring the
explicit or implicit definition of a public copy constructor and public assignment operator. Values typically live within other scopes,

i.e. within objects or blocks, rather than on the heap. Values are therefore normally passed around and manipulated directly as variables

or through references, but not as pointers that emphasize identity and indirection.

The specific requirements on value types to be used in an any are:

» A ValueType is CopyConstructible [20.1.3].
» A ValueTypeis optionally Assignable [23.1]. The strong exception-safety guarantee is required for all forms of assignment.

» The destructor for a ValueType upholds the no-throw exception-safety guarantee.

Header <boost/any.hpp>

cl ass bad_any_cast;
cl ass any;
tenpl at e<typenane T> T any_cast(any &);

nanespace boost {
tenpl at e<typenane T> T any_cast (const any &);

t enpl at e<t ypenane Val ueType> const Val ueType * any_cast(const any *)
t enpl at e<t ypenane Val ueType> Val ueType * any_cast (any *)

httpo://www.renderx.com/

render

http://www.boost.org/doc/libs/release/doc/html/../../boost/any.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.Any

Class bad_any cast

boost::bad_any cast — The exception thrown in the event of a failed any_cast of an any value.
Synopsis
/1 In header: <boost/any. hpp>

class bad_any cast : public std::bad _cast {

public:

virtual const char * what() const;
b
Description

virtual const char * what() const;

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Any

Class any

boost::any — A class whose instances can hold instances of any type that satisfies ValueType requirements.
Synopsis
/1 In header: <boost/any. hpp>

class any {
public:
/1 construct/copy/ destruct
any();
any(const any &);
t enpl at e<t ypenane Val ueType> any(const Val ueType &);
any & operator=(const any &);
t enpl at e<t ypenane Val ueType> any & operator=(const Val ueType &);

~any();

/1 modifiers
any & swap(any &) ;

/'l queries

bool enpty() const;
const std::type_info & type() const;

Description

any public construct/copy/destruct

any();
Postconditions: thi s->enpty()
2. _
any(const any & other);
Effects: Copy constructor that copies content of ot her into new instance, so that any content is equivalent in both type and
value to the content of ot her, or empty if ot her is empty.
Throws: May fail with a st d: : bad_al | oc exception or any exceptions arising from the copy constructor of the contained
type.
3. t enpl at e<t ypenane Val ueType> any(const Val ueType & val ue);
Effects: Makes a copy of val ue, so that the initial content of the new instance is equivalent in both type and value to val ue.
Throws: st d: : bad_al | oc or any exceptions arising from the copy constructor of the contained type.
4, B)
any & operator=(const any & rhs);
Effects: Copies content of r hs into current instance, discarding previous content, so that the new content is equivalent in
both type and value to the content of r hs, or empty if r hs. enpt y() .
Throws: st d: : bad_al | oc or any exceptions arising from the copy constructor of the contained type. Assignment satisfies

the strong guarantee of exception safety.

t enpl at e<t ypenane Val ueType> any & operator=(const Val ueType & rhs);

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Any

Effects: Makes a copy of r hs, discarding previous content, so that the new content of is equivalent in both type and value
torhs.
Throws; st d: : bad_al | oc or any exceptions arising from the copy constructor of the contained type. Assignment satisfies

the strong guarantee of exception safety.

6.
~any();
Effects: Releases any and all resources used in management of instance.
Throws: Nothing.

any modifiers

L any & swap(any & rhs);
Effects: Exchange of the contents of *t hi s and r hs.
Returns: *this
Throws: Nothing.
any queries
bool enpty() const;
Returns: t r ue if instance is empty, otherwise f al se.
Throws: Will not throw.
const std::type_info & type() const;
Returns: the t ypei d of the contained value if instance is non-empty, otherwise t ypei d(voi d) .
Notes: Useful for querying against types known either at compile time or only at runtime.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.Any

Function any_cast

boost::any _cast — Custom keyword cast for extracting a value of a given type from an any.
Synopsis
/1 In header: <boost/any. hpp>

tenpl at e<typenane T> T any_cast (any & operand);

tenpl at e<t ypenane T> T any_cast (const any & operand);

t enpl at e<t ypenane Val ueType> const Val ueType * any_cast(const any * operand)
t enpl at e<t ypenane Val ueType> Val ueType * any_cast (any * operand);

Description

Returns: If passed a pointer, it returns a similarly qualified pointer to the value content if successful, otherwise null is returned.
If T is ValueType, it returns a copy of the held value, otherwise, if T is a reference to (possibly const qualified)
ValueType, it returns a reference to the held value.

Throws: Overloads taking an any pointer do not throw; overloads taking an any value or reference throws bad_any_cast if
unsuccessful.
Acknowledgements

Doug Gregor ported the documentation to the BoostBook format.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Any
	Table of Contents
	Introduction
	Examples
	Reference
	ValueType requirements
	Header <boost/any.hpp>
	Class bad_any_cast
	Synopsis
	Description

	Class any
	Synopsis
	Description
	any public construct/copy/destruct
	any modifiers
	any queries

	Function any_cast
	Synopsis
	Description

	Acknowledgements

