Copyright © 2003, 2004 Jeremy B. Maitin-Shepard

Daniel James
Copyright © 2005-2008 Daniel James
Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1 O.txt or copy at ht-

Table of Contents

Introduction
The Data Structure
Equality Predicates and Hash Functions
Comparison with Associative Containers
These are generally implemented using balanced binary trees so that lookup time has logarithmic complexity. That is generally okay,
but in many cases a hash table can perform better, as accessing data has constant complexity, on average. The worst case complexity

tp://www.boost.org/LICENSE_1_0.txt)

Implementation Rationale
Change Log
Reference
Bibliography
Introduction
For accessing data based on key lookup, the C++ standard library offersst d: : set,std: : map,std: : mul ti set andstd: : nul ti map.
is linear, but that occurs rarely and with some care, can be avoided.
Also, the existing containers require a 'less than' comparison object to order their elements. For some data types this is impossible
to implement or isn't practical. In contrast, a hash table only needs an equality function and a hash function for the key.
With this in mind, the C++ Standard Library Technical Report introduced the unordered associative containers, which are implemented
using hash tables, and they have now been added to the Working Draft of the C++ Standard.

This library supplies an almost complete implementation of the specification in the Working Draft of the C++ Standard.

unor der ed_set and unordered_nul ti set are defined in the header <boost / unor der ed_set . hpp>

boost : : hash<Key>,

namespace boost {
tenmplate <
cl ass Key,
cl ass Hash =
class Pred = std::equal _t o<Key>,
class Alloc = std::all ocator<Key> >
cl ass unordered_set;
t enpl at e<
cl ass Key,
cl ass Hash = boost: : hash<Key>,
class Pred = std::equal _t o<Key>,
class Alloc = std::all ocator<Key> >
cl ass unordered _nultiset;
}
unor der ed_map and unor der ed_nul t i map are defined in the header <boost / unor der ed_map. hpp>
httpo://www.renderx.com/

render

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://en.wikipedia.org/wiki/Hash_table
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2960.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2960.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

nanespace boost {
tenplate <
cl ass Key, class Mapped,
cl ass Hash = boost:: hash<Key>,
class Pred = std::equal _t o<Key>,
class Alloc = std::allocator<Key> >
cl ass unordered_nap;

tenpl at e<
cl ass Key, class Mapped,
cl ass Hash = boost:: hash<Key>,
class Pred = std::equal _t o<Key>,

class Alloc = std::allocator<Key> >
cl ass unordered_nul ti map;

When using Boost. TR1, these classes are included from <unor der ed_set > and <unor der ed_map>, with the classes added to the
st d: : tr1 namespace.

The containers are used in a similar manner to the normal associative containers:

t ypedef boost::unordered_map<std::string, int> nap;
mp X;

X["one"]
X["two"]
X["three"]

NP

3;

assert(x.at("one") == 1);
assert(x.find("mssing") == x.end());

But since the elements aren't ordered, the output of:

BOOST_FOREACH(map: : val ue_type i, x) {
std::cout<<i.first<<",6 "<<i.second<<"\n";

}
can be in any order. For example, it might be:

two, 2
one, 1
three, 3

To store an object in an unordered associative container requires both an key equality function and a hash function. The default
function objects in the standard containers support a few basic types including integer types, floating point types, pointer types, and
the standard strings. Since Boost.Unordered uses boost : : hash it also supports some other types, including standard containers.
To use any types not supported by these methods you have to extend Boost.Hash to support the type or use your own custom
equality predicates and hash functions. See the Equality Predicates and Hash Functions section for more details.

There are other differences, which are listed in the Comparison with Associative Containers section.

The Data Structure

The containers are made up of a number of 'buckets', each of which can contain any number of elements. For example, the following
diagram shows an unor der ed_set with 7 buckets containing 5 elements, A, B, C, D and E (this is just for illustration, containers
will typically have more buckets).

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Bucket 3

Bucket 4

Bucket 2

®

Bucket 1

©

®

Bucket 6

Bucket 7

Bucket 5

©

examined.

rende

r

In order to decide which bucket to place an element in, the container applies the hash function, Hash, to the element's key (for un-
order ed_set and unor der ed_nul ti set the key is the whole element, but is referred to as the key so that the same terminology

can be used for sets and maps). This returns a value of type st d: : si ze_t . std: : si ze_t has a much greater range of values then
the number of buckets, so that container applies another transformation to that value to choose a bucket to place the element in.

Retrieving the elements for a given key is simple. The same process is applied to the key to find the correct bucket. Then the key is
compared with the elements in the bucket to find any elements that match (using the equality predicate Pr ed). If the hash function
has worked well the elements will be evenly distributed amongst the buckets so only a small number of elements will need to be

There is more information on hash functions and equality predicates in the next section.

You can see in the diagram that A & D have been placed in the same bucket. When looking for elements in this bucket up to 2 com-
parisons are made, making the search slower. This is known as a collision. To keep things fast we try to keep collisions to a minimum.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 1. Methods for Accessing Buckets

size_type bucket _count() const

size_type max_bucket _count () const
size_type bucket _size(size_type n) const

| ocal _iterator

const _local _iterator

Boost.Unordered

Description
The number of buckets.
An upper bound on the number of buckets.

The number of elements in bucket n.

Returns the index of the bucket which would contain k

Return begin and end iterators for bucket n.

si ze_type bucket (key_type const& k) const
begi n(si ze_type n);

| ocal _iterator end(size_type n);
begi n(si ze_type n) const;
end(si ze_type n) const;

cbegi n(si ze_type n) const;

const _local _iterator
const | ocal _iterator
const _local _iterator
requirements based on the container's 'load factor', the average number of elements per bucket. Containers also have a 'maximum

Controlling the number of buckets

cend(si ze_type n) const;
As more elements are added to an unordered associative container, the number of elements in the buckets will increase causing
performance to degrade. To combat this the containers increase the bucket count as elements are inserted. You can also tell the

container to change the bucket count (if required) by calling r ehash.
The standard leaves a lot of freedom to the implementer to decide how the number of buckets are chosen, but it does make some

load factor' which they should try to keep the load factor below.
You can't control the bucket count directly but there are two ways to influence it:
« Specify the minimum number of buckets when constructing a container or when calling r ehash.
» Suggest a maximum load factor by calling max_| oad_f act or.
max_| oad_f act or doesn't let you set the maximum load factor yourself, it just lets you give a hint. And even then, the draft
standard doesn't actually require the container to pay much attention to this value. The only time the load factor is required to be
less than the maximum is following a call to r ehash. But most implementations will try to keep the number of elements below the
max load factor, and set the maximum load factor to be the same as or close to the hint - unless your hint is unreasonably small or

large.

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Table 2. Methods for Controlling Bucket Size

Method Description

X(size_type n) Construct an empty container with at least n buckets (X is the container type).
Construct an empty container with at least n buckets and insert elements from

Inputlterator j,
the range [i , j) (Xis the container type).

X(lnputlterator i,
size_type n)

float | oad_factor() const The average number of elements per bucket.

float max_| oad_factor() const Returns the current maximum load factor.

float max_|l oad_factor(float z) Changes the container's maximum load factor, using z as a hint.

voi d rehash(size_type n) Changes the number of buckets so that there at least n buckets, and so that the
load factor is less than the maximum load factor.

lterator Invalidation

It is not specified how member functions other than r ehash affect the bucket count, although i nsert is only allowed to invalidate
iterators when the insertion causes the load factor to be greater than or equal to the maximum load factor. For most implementations
this means that insert will only change the number of buckets when this happens. While iterators can be invalidated by callstoi nsert

and r ehash, pointers and references to the container's elements are never invalidated.

In a similar manner to using r eser ve for vect or s, it can be a good idea to call r ehash before inserting a large number of elements
This will get the expensive rehashing out of the way and let you store iterators, safe in the knowledge that they won't be invalidated.

If you are inserting n elements into container x, you could first call:

x.rehash((x.size() + n) / x.max_load_factor() + 1);

Note: r ehash's argument is the minimum number of buckets, not the number of elements, which is why the new size is divided
by the maximum load factor. The + 1 guarantees there is no invalidation; without it, reallocation could occur if the number
of bucket exactly divides the target size, since the container is allowed to rehash when the load factor is equal to the maximum

load factor.

Equality Predicates and Hash Functions

While the associative containers use an ordering relation to specify how the elements are stored, the unordered associative containers
use an equality predicate and a hash function. For example, boost : : unor der ed_map is declared as:

template <

cl ass Key, class Mapped,
cl ass Hash = boost: : hash<Key>,
class Pred = std::equal _t o<Key>,
Mapped> > >

class Alloc = std::allocator<std::pair<Key const,

cl ass unordered_nap;

The hash function comes first as you might want to change the hash function but not the equality predicate. For example, if you

wanted to use the FNV-1 hash you could write:

httpo://www.renderx.com/

render

http://www.isthe.com/chongo/tech/comp/fnv/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

boost: : unordered_map<std::string, int, hash::fnv_1>
dictionary;

There is an implementation of FNV-1 in the examples directory.

If you wish to use a different equality function, you will also need to use a matching hash function. For example, to implement a
case insensitive dictionary you need to define a case insensitive equality predicate and hash function:

struct iequal _to
std::binary_function<std::string, std::string, bool>

{
bool operator()(std::string consté& X,
std::string const& y) const
{
return boost::algorithm:iequals(x, y, std::locale())
}
s

struct ihash
std::unary_function<std::string, std::size_t>

{
std::size_t operator()(std::string const& x) const
{
std::size_t seed = O;
std::local e |ocal e;
for(std::string::const_iterator it = x.begin()
it !'= x.end(); ++it)
{
boost : : hash_conbi ne(seed, std::toupper(*it, locale))
}
return seed
}
};

Which you can then use in a case insensitive dictionary:

boost: : unordered_nap<std::string, int, ihash, iequal_to>
idictionary

This is a simplified version of the example at /libs/unordered/examples/case_insensitive.hpp which supports other locales and string

types.
Caution
Be careful when using the equality (==) operator with custom equality predicates, especially if you're using a function
pointer. If you compare two containers with different equality predicates then the result is undefined. For most
stateless function objects this is impossible - since you can only compare objects with the same equality predicate
you know the equality predicates must be equal. But if you're using function pointers or a stateful equality predicate
(e.g. boost::function) then you can get into trouble.

Custom Types

Similarly, a custom hash function can be used for custom types:

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../libs/unordered/examples/fnv1.hpp
http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../libs/unordered/examples/case_insensitive.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

struct point {

int Xx;
int y;
b
bool operator==(point const& pl, point const& p2)
{
return pl.x == p2.x && pl.y == p2.y;
}

struct point_hash
std::unary_function<point, std::size_t>

{
std::size_t operator()(point const& p) const
{
std::size_t seed = O;
boost: : hash_conbi ne(seed, p.Xx);
boost: : hash_conbi ne(seed, p.y);
return seed;
}
b

boost: : unordered_nul ti set<point, point_hash> points;

Since the default hash function is Boost.Hash, we can extend it to support the type so that the hash function doesn't need to be explicitly
given:

struct point {

int Xx;
int y;
H
bool operator==(point const& pl, point const& p2)
{
return pl.x == p2.x && pl.y == p2.y;
}

std::size_t hash_val ue(point const& p) {
std::size_t seed = O;
boost: : hash_conbi ne(seed, p.Xx);
boost: : hash_conbi ne(seed, p.y);
return seed;

}

/1 Now the default function objects work.
boost: : unordered_nul ti set <poi nt> points;

See the Boost.Hash documentation for more detail on how to do this. Remember that it relies on extensions to the draft standard -
so it won't work on other implementations of the unordered associative containers.

Table 3. Methods for accessing the hash and equality functions.
Method Description
hasher hash_function() const Returns the container's hash function.

key equal key_eq() const Returns the container's key equality function.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Comparison with Associative Containers
Unor dered Associative Containers
Parameterized by a function object Hash and an equivalence relation Pr ed
Keys can be hashed using hasher which is accessed by member function
hash_f uncti on(), and checked for equality using key_equal which is

accessed by member function key_eq() . There is no function object for

Table 4. Interface differences.

Parameterized by an ordering relation Conpar e
Constructors have optional extra parameters for the initial minimum number
k2)

Associative Containers
compared or hashing values.
of buckets, a hash function and an equality object.

is accessed by member functionkey_conp() , values

can be compared using val ue_conpar e which is

accessed by member function val ue_conp() .
Keys k1, k2 are considered equivalent if Pred(k1,

Keys can be compared using key_conpar e which
No equivalent. Since the elements aren't ordered | ower _bound and up-

Constructors have optional extra parameters for the
and up-

Keys k1, k2 are considered equivalent if ! Com
k1)
per _bound would be meaningless.
equal _range(k) returns a range at the end of the container if k isn't
present in the container. It can't return a positioned range as k could be in-

serted into multiple place. To find out the bucket that k would be inserted

into use bucket (k) . But remember that an insert can cause the container

to rehash - meaning that the element can be inserted into a different bucket.
i terator,const_iterator are of at least the forward category.

comparison object.
pare(kl, k2) && ! Conpare(k2,
Member function | ower _bound(k)
per _bound(k)
equal _range(k) returns an empty range at the po-

sition that k would be inserted if k isn't present in the
Iterators can be invalidated by calls to insert or rehash. Pointers and refer-

ences to the container's elements are never invalidated.
Iterators iterate through the container in an arbitrary order, that can change
as elements are inserted. Although, equivalent elements are always adjacent.
Local iterators can be used to iterate through individual buckets. (I don't

container.
i terator,const _iterat or areof the bidirectional
think that the order of local iterators and iterators are required to have any

category.
elements are never invalidated.

Iterators iterate through the container in the order

Iterators, pointers and references to the container's
defined by the comparison object.

correspondence.)
No comparison operators are defined in the standard, although implement-
ations might extend the containers to support ==and ! =,

When inserting with a hint, implementations are permitted to ignore the
The containers' hash or predicate function can throw exceptions from er ase

No equivalent
:=1 I =l <1 <:l >1 >= Oper-
hint.

Can be compared using the

ators.

er ase never throws an exception

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered
Unor dered Associative Containers
O(n) where nis the minimum number of buckets.

Average case O(N), worst case O(N?)

Average case constant, worst case linear

Associative Containers
Average case constant, worst case linear (ie. the

same as a hormal insert).

Table 5. Complexity Guarantees
constant
O(Nlog N), O(N) if the range is sorted
Average case O(N), worst case O(N * si ze())
O(count (k)), Worst case:

logarithmic

Operation
Construction of empty container
Construction of container from a
range of N elements with val ue_conp()
Insert a single element logarithmic
Insert a single element with a hint Amortized constant if t elements inser-
ted right after hint, logarithmic other-
wise
Inserting a range of N elements N log(si ze() +N)
Erase by key, k O(log(si ze()) + count (k)) Average case:
O(si ze())
Erase a single element by iterator Amortized constant Average case: O(1), Worst case: O(si ze())
O(log(si ze()) + N) Average case: O(N), Worst case: O(si ze())
O(si ze()) O(si ze())
Average case: O(1), Worst case: O(si ze())
Average case: O(1), Worst case: O(si ze())
Average case: O(count (k)), Worst case
O(si ze())

Erase a range of N elements
O(log(si ze()) + count (k))
n/a

Clearing the container
logarithmic

Find
logarithmic

Count
equal _range(Kk)
The intent of this library is to implement the unordered containers in the draft standard, so the interface was fixed. But there are still

| ower _bound,upper _bound
Implementation Rationale
some implementation decisions to make. The priorities are conformance to the standard and portability.
The wikipedia article on hash tables has a good summary of the implementation issues for hash tables in general.
By specifying an interface for accessing the buckets of the container the standard pretty much requires that the hash table uses chained

addressing.
It would be conceivable to write a hash table that uses another method. For example, it could use open addressing, and use the

 The draft standard requires that pointers to elements aren't invalidated, so the elements can't be stored in one array, but will need
httpo://www.renderx.com/

Data Structure
lookup chain to act as a bucket but there are a some serious problems with this:
a layer of indirection instead - losing the efficiency and most of the memory gain, the main advantages of open addressing.

* Local iterators would be very inefficient and may not be able to meet the complexity requirements.

render

http://en.wikipedia.org/wiki/Hash_table
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

 There are also the restrictions on when iterators can be invalidated. Since open addressing degrades badly when there are a high
number of collisions the restrictions could prevent a rehash when it's really needed. The maximum load factor could be set to a

fairly low value to work around this - but the standard requires that it is initially set to 1.0.
» And since the standard is written with a eye towards chained addressing, users will be surprised if the performance doesn't reflect

For containers with unique keys | store the buckets in a single-linked list. There are other possible data structures (such as a double-
linked list) that allow for some operations to be faster (such as erasing and iteration) but the possible gain seems small compared to

that.
So chained addressing is used.
the extra memory needed. The most commonly used operations (insertion and lookup) would not be improved at all.
But for containers with equivalent keys a single-linked list can degrade badly when a large number of elements with equivalent keys
are inserted. | think it's reasonable to assume that users who choose to use unor dered_nul ti set or unordered_mnul ti map do
so because they are likely to insert elements with equivalent keys. So | have used an alternative data structure that doesn't degrade,
at the expense of an extra pointer per node.
This works by adding storing a circular linked list for each group of equivalent nodes in reverse order. This allows quick navigation
to the end of a group (since the first element points to the last) and can be quickly updated when elements are inserted or erased. The
main disadvantage of this approach is some hairy code for erasing elements.
Number of Buckets
There are two popular methods for choosing the number of buckets in a hash table. One is to have a prime number of buckets, another
Using a prime number of buckets, and choosing a bucket by using the modulus of the hash function's result will usually give a good
value. For some specially designed hash functions it is possible to do this and still get a good result but as the containers can take

is to use a power of 2.
result. The downside is that the required modulus operation is fairly expensive.
Using a power of 2 allows for much quicker selection of the bucket to use, but at the expense of loosing the upper bits of the hash

To avoid this a transformation could be applied to the hash function, for an example see Thomas Wang's article on integer hash

arbitrary hash functions this can't be relied on.
functions. Unfortunately, a transformation like Wang's requires knowledge of the number of bits in the hash value, so it isn't portable

enough. This leaves more expensive methods, such as Knuth's Multiplicative Method (mentioned in Wang's article). These don't
tend to work as well as taking the modulus of a prime, and the extra computation required might negate efficiency advantage of

power of 2 hash tables.
So, this implementation uses a prime number for the hash table size.

Equality operators

oper at or == and oper at or ! = are not included in the standard, but I've added them as | think they could be useful and can be im-
are in the same order, in n2944 they just need to be a permutation of each other. Since the order of elements with equal keys is now

plemented fairly efficiently. They are specified differently to the other standard containers, comparing keys using the equality pre-
It's also different to the proposal n2944. which uses the equality operators for the whole of val ue_t ype. This implementation just
uses the key equality function for the key, and mapped_t ype's equality operator in unor der ed_map and unor der ed_mul t i map

dicate rather than oper at or ==.

Also, in unor der ed_nul t i map, the mapped values for a group of elements with equivalent keys are only considered equal if they
10

for the mapped part of the element.
defined to be stable, it seems to me that their order can be considered part of the container's value.

render

httpo://www.renderx.com/

http://www.concentric.net/~Ttwang/tech/inthash.htm
http://www.concentric.net/~Ttwang/tech/inthash.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2944.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Active Issues and Proposals

C++0x allocators

Recent drafts have included an overhaul of the allocators, but this was dependent on concepts which are no longer in the standard.
n2946 attempts to respecify them without concepts. I'll try to implement this (or an appropriate later version) in a future version of
boost, possibly changed a little to accomodate non-C++0x compilers.

Swapping containers with unequal allocators

Itisn't clear how to swap containers when their allocators aren't equal. This is Issue 431: Swapping containers with unequal allocators.
This has been resolved with the new allocator specification, so this should be fixed when support is added.

Areinsert and erase stable for unordered_multiset and unordered_multimap?

It wan't specified if unor der ed_nul ti set and unor der ed_mul ti map preserve the order of elements with equivalent keys (i.e.
if they're stable under i nsert and er ase). Since n2691 it's been specified that they do and this implementation follows that.

Change Log

Review Version

Initial review version, for the review conducted from 7th December 2007 to 16th December 2007.

1.35.0 Add-on - 31st March 2008

Unofficial release uploaded to vault, to be used with Boost 1.35.0. Incorporated many of the suggestions from the review.
 Improved portability thanks to Boost regression testing.
* Fix lots of typos, and clearer text in the documentation.

 Fix floating pointto st d: : si ze_t conversion when calculating sizes from the max load factor, and use doubl e in the calculation
for greater accuracy.

 Fix some errors in the examples.

Boost 1.36.0

First official release.
» Rearrange the internals.

» Move semantics - full support when rvalue references are available, emulated using a cut down version of the Adobe move library
when they are not.

» Emplace support when rvalue references and variadic template are available.
» More efficient node allocation when rvalue references and variadic template are available.

» Added equality operators.

Boost 1.37.0

» Rename overload of enpl ace with hint, to enpl ace_hi nt as specified in n2691.

11

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2946.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#431
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2691.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2691.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

and <boost/ unor der ed/ un-

Boost.Unordered
<boost / unor der ed/ unor der ed_nap_fwd. hpp>

at

forwarding headers
ordered_set _fwd. hpp>.

* Provide
» Move all the implementation inside boost / unor der ed, to assist modularization and hopefully make it easier to track changes
Ticket 2237: Document that the equality and inequality operators are undefined for two objects if their equality predicates aren't

in subversion.

Boost 1.38.0
Use boost : : swap.
with two calls to the allocator's const r uct method - once for the pointers and once for the value. It now constructs the node with

equivalent. Thanks to Daniel Krgler.
Ticket 1710: Use a larger prime number list. Thanks to Thorsten Ottosen and Hervé Brénnimann.

Use aligned storage to store the types. This changes the way the allocator is used to construct nodes. It used to construct the node

a single call to construct and then constructs the value using in place construction.
Add support for C++0x initializer lists where they're available (currently only g++ 4.4 in C++0x mode).

Boost 1.39.0

» Ticket 2975: Store the prime list as a preprocessor sequence - so that it will always get the length right if it changes again in the

 Ticket 2756: Avoid a warning on Visual C++ 2009.
» Some other minor internal changes to the implementation, tests and documentation.

» Avoid an unnecessary copy in operator[] .
 Ticket 2975: Fix length of prime number list.
Ticket 2908, Ticket 3096: Some workarounds for old versions of borland, including adding explicit destructors to all containers.

Boost 1.40.0
Ticket 1978: Implement enpl ace for all compilers.

future.
Ticket 3082: Disable incorrect Visual C++ warnings.

Better configuration for C++0x features when the headers aren't available.

» The original version made heavy use of macros to sidestep some of the older compilers' poor template support. But since | no
longer support those compilers and the macro use was starting to become a maintenance burden it has been rewritten to use templates

instead of macros for the implementation classes.

httpo://www.renderx.com/

12

Create less buckets by default.
Boost 1.41.0 - Major update
» The container objcet is now smaller thanks to using boost : : conpr essed_pai r for EBO and a slightly different function buffer

- now using a bool instead of a member pointer.
 Buckets are allocated lazily which means that constructing an empty container will not allocate any memory.

render

http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../libs/utility/swap.html
https://svn.boost.org/trac/boost/ticket/2237
https://svn.boost.org/trac/boost/ticket/1710
http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../libs/type_traits/doc/html/boost_typetraits/category/alignment.html
https://svn.boost.org/trac/boost/ticket/2756
https://svn.boost.org/trac/boost/ticket/2975
https://svn.boost.org/trac/boost/ticket/2975
https://svn.boost.org/trac/boost/ticket/1978
https://svn.boost.org/trac/boost/ticket/2908
https://svn.boost.org/trac/boost/ticket/3096
https://svn.boost.org/trac/boost/ticket/3082
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Boost 1.42.0

» Support instantiating the containers with incomplete value types.
* Reduced the number of warnings (mostly in tests).
» Improved codegear compatibility.

» Ticket 3693: Add er ase_r et urn_voi d as a temporary workaround for the current er ase which can be inefficient because it
has to find the next element to return an iterator.

» Add templated find overload for compatible keys.
* Ticket 3773: Add missing st d qualifier topt rdi ff _t.

» Some code formatting changes to fit almost all lines into 80 characters.

Boost 1.43.0

» Ticket 3966: er ase_r et urn_voi disnow qui ck_er ase, which is the current forerunner for resolving the slow erase by iterator,
although there's a strong possibility that this may change in the future. The old method name remains for backwards compatibility
but is considered deprecated and will be removed in a future release.

» Use Boost.Exception.

* Stop using deprecated BOOST_HAS_* macros.

Boost 1.45.0

* Fix a bug when inserting into an unor der ed_nmap or unor der ed_set using iterators which returns val ue_t ype by copy.

13

render

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/3693
http://svn.boost.org/trac/boost/ticket/3773
http://svn.boost.org/trac/boost/ticket/3966
http://home.roadrunner.com/~hinnant/issue_review/lwg-active.html#579
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.Unordered

Reference

Header <boost/unordered_set.hpp>

namespace boost {

t enpl at e<t ypenane Val ue,
typenane Pred =
typenane Alloc =

cl ass unordered_set;

t enpl at e<t ypenane Val ue, typenane Hash,

bool operat or==(unor der ed_set <Val ue,
unor der ed_set <Val ue,

t enpl at e<t ypenane Val ue, typenane Hash,

bool operator!=(unordered_set <Val ue,
unor der ed_set <Val ue,

t enpl at e<t ypenane Val ue, typenane Hash,

voi d swap(unordered_set <Val ue, Hash,
unor der ed_set <Val ue, Hash,

t enpl at e<t ypenane Val ue, typenane Hash
typenane Pred =
typenane Alloc =

cl ass unordered _nultiset;

t enpl at e<t ypenane Val ue, typenane Hash,

bool

typenane Hash

t enpl at e<t ypenane Val ue,
bool

typenane Hash,

t enpl at e<t ypenane Val ue,
voi d swap(unordered_nul tiset <Val ue,
unor dered_nul ti set <Val ue,

t ypenanme Hash,

oper at or ==(unor dered_nul ti set <Val ue,
unor dered_nul ti set <Val ue,

operator! =(unordered_nul ti set <Val ue,
unor dered_nul ti set <Val ue,

= boost : : hash<Val ue>,

std: : equal _t o<Val ue>,
std::all ocator<Val ue> >

typenane Pred, typenane Alloc>
Hash, Pred, Alloc> constg&,

Hash, Pred, Alloc> const&);
typenane Pred, typenane Alloc>
Hash, Pred, Alloc> constg&,

Hash, Pred, Alloc> const&);
typenane Pred, typenane Alloc>
Pred, Alloc>&,

Pred, Alloc>&);

= boost : : hash<Val ue>,

std: : equal _t o<Val ue>,
std::all ocator<Val ue> >

typenane Pred, typenane Alloc>
Hash, Pred, Alloc> constg&,

Hash, Pred, Alloc> const&);
typenane Pred, typenane Alloc>
Hash, Pred, Alloc> constg&,

Hash, Pred, Alloc> const&);
typenane Pred, typenane Alloc>

Hash, Pred, Alloc>&,
Hash, Pred, Alloc>&);

14

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../boost/unordered_set.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.Unordered

Class template unordered_set

boost::unordered_set — An unordered associative container that stores unique values.
Synopsis

/1 I'n header: <boost/unordered_set. hpp>

t enpl at e<t ypenane Val ue, typenane Hash = boost:: hash<Val ue>,
typenane Pred = std::equal _to<Val ue>,
typenane Alloc = std::allocator<Value> >
cl ass unordered_set {
public:
/'l types
t ypedef Val ue key_type;
t ypedef Val ue val ue_type;
t ypedef Hash hasher;
t ypedef Pred key_equal ;
typedef Alloc allocator_type;
typedef typenane allocator_type:: pointer pointer;
typedef typenane allocator_type::const_pointer const_pointer;
typedef typenane allocator_type::reference reference;
typedef typenane allocator_type::const_reference const_reference;
typedef inplenmentation-defined size_type;
typedef inplenmentation-defined difference_type;
typedef inplenmentation-defined iterator;
typedef inplenmentation-defined const_iterator;
typedef inplenmentation-defined |ocal _iterator;
t ypedef inpl enmentation-defined const_local _iterator;

/1 construct/copy/destruct
explicit unordered_set(size_type = inplenentation-defined,
hasher const& = hasher (),
key_equal const& = key_equal (),
al l ocator _type const& = allocator_type());
t enpl at e<t ypenane | nputlterator>
unordered_set (I nputlterator, Inputlterator,
size_type = inpl enentation-defined,
hasher const& = hasher(), key_equal const& = key_equal (),
al l ocator _type const& = allocator_type());
unor der ed_set (unordered_set const&);
unor der ed_set (unordered_set &&);
explicit unordered_set (Al ocator const&);
unor der ed_set (unordered_set const& Allocator const&);
~unor dered_set ();
unor der ed_set & oper at or =(unor dered_set const&);
unor dered_set & oper at or =(unor dered_set &&);
al l ocator _type get_allocator() const;

/'l size and capacity

bool enpty() const;
size_type size() const;
size_type max_size() const;

/] iterators

iterator begin();

const __iterator begin() const;
iterator end();

const _iterator end() const;
const _iterator cbhegin() const;
const _iterator cend() const;

15

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

/1 modifiers

tenpl ate<typenane... Args> std::pair<iterator, bool> enplace(Args&&. ..);
tenpl ate<typenane... Args> iterator enplace_hint(const_iterator, Args&& ..);
std::pair<iterator, bool> insert(val ue_type const&);

iterator insert(const_iterator, value_type constg&);

tenpl ate<typenane Inputlterator> void insert(lnputlterator, Inputlterator);
iterator erase(const_iterator);

size_type erase(key_type const&);

iterator erase(const_iterator, const_iterator);

voi d qui ck_erase(const _iterator);

voi d erase_return_voi d(const_iterator);

void clear();

voi d swap(unordered_set &) ;

/| observers
hasher hash_function() const;
key_equal key_eq() const;

/'l 1 ookup
iterator find(key_type const&);
const __iterator find(key_type const& const;
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenane Conpati bl ePr edi cat e>
iterator find(Conpatibl eKey const& Conpati bl eHash const &,
Conpati bl ePredi cate const &) ;
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenane Conpati bl ePr edi cat e>
const _iterator
find(Conpati bl eKey const & Conpati bl eHash const &,
Conpati bl ePredi cate const&) const;
size_type count (key_type const&) const;
std::pair<iterator, iterator> equal _range(key_type const&);
std::pair<const_iterator, const_iterator> equal _range(key_type const&) const;

/'l bucket interface

si ze_type bucket _count() const;

size_type nmax_bucket _count () const;

si ze_type bucket _size(size_type) const;

si ze_type bucket (key_type const&) const;

| ocal _iterator begin(size_type);

const _local _iterator begin(size_type) const;
| ocal _iterator end(size_type);

const _local _iterator end(size_type) const;
const _local _iterator chegin(size_type) const;
const _local _iterator cend(size_type);

/'l hash policy

float | oad_factor() const;
float max_| oad_factor() const;
voi d nax_|l oad_factor(float);
voi d rehash(size_type);

};

/1l Equality Conparisons
t enpl at e<t ypenane Val ue, typenanme Hash, typenane Pred, typenane Al oc>
bool operator==(unordered_set <Val ue, Hash, Pred, Alloc> const&,
unor der ed_set <Val ue, Hash, Pred, Alloc> const&);
t enpl at e<t ypenane Val ue, typenane Hash, typenane Pred, typenane Al oc>
bool operator!=(unordered_set<Val ue, Hash, Pred, Alloc> const&,

16

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Hash, Pred, Alloc> const&);
typenane All oc>

t ypenanme Pred,
Hash, Pred, Alloc>&,
Hash, Pred, Alloc>&);

unor der ed_set <Val ue,
typename Hash,

t enpl at e<t ypenane Val ue,
unor der ed_set <Val ue,

/'l swap

voi d swap(unor dered_set <Val ue,
Based on chapter 23 of the working draft of the C++ standard [n2960]. But without the updated rules for allocators.
A unary function object type that acts a hash function for a Val ue. It takes a single argument of type Val ue and returns

Value must be Assignable and CopyConstructible
A binary function object that implements an equivalence relation on values of type Val ue. A binary function object that
induces an equivalence relation on values of type Key. It takes two arguments of type Key and returns a value of type

Description
Template Parameter s
Value
Hash
a value of type std::size_t.
Pred
bool.
Alloc An allocator whose value type is the same as the container's value type.
The elements are organized into buckets. Keys with the same hash code are stored in the same bucket.
The number of buckets can be automatically increased by a call to insert, or as the result of calling rehash.
unor der ed_set public types

typedef Value key_type;
typedef Value value_type;

1

2.
typedef Hash hasher;

typedef Pred key_equal;
typedef Alloc allocator_type;

typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;

typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;

8.

9.
10. typedef implementation-defined size_type;
An unsigned integral type.

size_type can represent any non-negative value of difference_type.
11 typedef implementation-defined difference_type;

A signed integral type.
Is identical to the difference type of iterator and const_iterator.

17

httpo://www.renderx.com/

render

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2960.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

12 typedef implementation-defined iterator;
A constant iterator whose value type is value_type.
The iterator category is at least a forward iterator.

Convertible to const_iterator.

13 typedef implementation-defined const _iterator;
A constant iterator whose value type is value_type.

The iterator category is at least a forward iterator.

14. typedef implementation-defined local_iterator;

An iterator with the same value type, difference type and pointer and reference type as iterator.
A constant iterator with the same value type, difference type and pointer and reference type as const_iterator.

A local_iterator object can be used to iterate through a single bucket.

15. typedef implementation-defined const_local _iterator;
= i npl ement ati on- defi ned,
= hasher (),
= key_equal (),
= allocator_type());

A const_local_iterator object can be used to iterate through a single bucket.
unor der ed_set public construct/copy/destruct
hasher const & hf
key_equal consté& eq =
al l ocator_type const& a =
Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-

explicit unordered_set(size_type n
I,

=0
I nputlterator

= hasher (),

locator and a maximum load factor of 1.0.
si ze()
size_type n = inplenentation-defined,
const & eq = key_equal (),

key_equal
al l ocator_type const& a = allocator_type());

unordered_set (I nputlterator f,

Postconditions:
t enpl at e<t ypenane | nputlterator>
hasher const & hf

Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-
const &) ;

locator and a maximum load factor of 1.0 and inserts the elements from [f, I) into it.
unor dered_set (unordered_set
The copy constructor. Copies the contained elements, hash function, predicate, maximum load factor and allocator.
Requires: val ue_t ype is copy constructible
httpo://www.renderx.com/

unor der ed_set (unordered_set &&);
This is emulated on compilers without rvalue references.
val ue_t ype is move constructible. (TODO: This is not actually required in this implementation).
18

The move constructor.

Notes:
Requires:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

const& a);

Constructs an empty container, using allocator a.
const & X,

unor der ed_set (unor der ed_set

explicit unordered_set(Allocator const& a);
Al | ocat or
Constructs an container, copying x's contained elements, hash function, predicate, maximum load factor, but using allocator a.
The destructor is applied to every element, and all memory is deallocated

~unor dered_set ();

Notes:
&&) ;

unor der ed_set & oper at or =(unor der ed_set const &)
On compilers without rvalue references, there is a single assignment operator with the signature oper at or =(un-

The assignment operator. Copies the contained elements, hash function, predicate and maximum load factor but not the allocator.
On compilers without rvalue references, there is a single assignment operator with the signature oper at or =(un-

ordered_set) in order to emulate move semantics.

val ue_t ype is copy constructible

Notes:
Requires:
unor der ed_set & oper at or =(unor der ed_set

or der ed_set) in order to emulate move semantics.

const ;

The move assignment operator.
val ue_t ype is move constructible. (TODO: This is not actually required in this implementation).

Notes:
Requires:
al l ocator _type get_allocator()
unor der ed_set size and capacity
bool enpty() const;
size() == 0
const ;
end())

Returns:
size_type size()
std:: di stance(begin(),

const ;

Returns:
size_type max_si ze()
si ze()) of the largest possible container.
An iterator referring to the first element of the container, or if the container is empty the past-the-end value for the

Returns:
unor der ed_set iterators
const ;

httpo://www.renderx.com/

19

iterator begin();
const _iterator begin()

Returns:
container.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

iterator end();
const _iterator end()

const;
An iterator which refers to the past-the-end value for the container.
args);

A constant iterator referring to the first element of the container, or if the container is empty the past-the-end value

Returns:
const _iterator cbegin() const;

for the container.
A constant iterator which refers to the past-the-end value for the container.
bool > enpl ace(Args&&. .

Args> std::pair<iterator,

Returns:
unor der ed_set modifiers

Returns:
const _iterator cend() const;
t enpl at e<t ypenane. .
Inserts an object, constructed with the arguments ar gs, in the container if and only if there is no element in the container with

The bool component of the return type is true if an insert took place.
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

If an exception is thrown by an operation other than a call to hasher the function has no effect.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10 argu-

an equivalent value.
Returns:
with equivalent value.
Throws:
Notes:
factor.

Pointers and references to elements are never invalidated.

ments, with no support for rvalue references or move semantics.
Args&&. .. args);

t enpl at e<t ypenane. .

iterator enplace_hint(const_iterator hint,
Inserts an object, constructed with the arguments ar gs, in the container if and only if there is no element in the container with

If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

an equivalent value.

with equivalent value.
If an exception is thrown by an operation other than a call to hasher the function has no effect.

Args>
hint is a suggestion to where the element should be inserted.
The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way that

Returns:
Throws:

Notes:
Boost.Unordered supports is to point to an existing element with the same value.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.
Pointers and references to elements are never invalidated.

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10 argu-
20

ments, with no support for rvalue references or move semantics.
bool > insert(val ue_type consté& obj);

std::pair<iterator,

3.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns:

Boost.Unordered

Inserts obj in the container if and only if there is no element in the container with an equivalent value.
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

with equivalent value.
If an exception is thrown by an operation other than a call to hasher the function has no effect.

The bool component of the return type is true if an insert took place.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
val ue_type const& obj);

Pointers and references to elements are never invalidated.

Inserts obj in the container if and only if there is no element in the container with an equivalent value.

Throws:
factor.
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element
The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way that

Notes:
iterator insert(const_iterator hint,
with equivalent value.
If an exception is thrown by an operation other than a call to hasher the function has no effect.

Returns:
| ast);

Throws:

Notes:
I nputlterator

hint is a suggestion to where the element should be inserted.
Boost.Unordered supports is to point to an existing element with the same value.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
Inserts a range of elements into the container. Elements are inserted if and only if there is no element in the container with an

factor.
Pointers and references to elements are never invalidated.

t enpl at e<t ypenane | nputlterator>
void insert(Inputlterator first,

5.
equivalent value.
When inserting a single element, if an exception is thrown by an operation other than a call to hasher the function

Throws:
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

has no effect.
Notes:
factor.
Pointers and references to elements are never invalidated.
position);

iterator erase(const_iterator

Erase the element pointed to by posi ti on.
Only throws an exception if it is thrown by hasher or key_equal .
In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
it has to search through empty buckets for the next element, in order to return the iterator. The method quick_erase

Returns:

Throws:

The iterator following posi t i on before the erasure.
not be true in other implementations.
When the number of elements is a lot smaller than the number of buckets this function can be very inefficient as

is faster, but has yet to be standardized.

Notes:

The number of elements erased.
21

size_type erase(key_type const& k);
Erase all elements with key equivalent to k.
Only throws an exception if it is thrown by hasher or key_equal .

Returns:
Throws:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered
| ast);

const _iterator

iterator erase(const_iterator first,
Only throws an exception if it is thrown by hasher or key_equal .

Erases the elements in the range from first tol ast.
The iterator following the erased elements - i.e. | ast .
In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might

Returns:

Throws:
not be true in other implementations.

voi d quick_erase(const_iterator position);
Only throws an exception if it is thrown by hasher or key_equal .

Erase the element pointed to by posi ti on.

not be true in other implementations.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
As it hasn't been standardized, it's likely that this may change in the future.

position);

Throws:
This method is faster than erase as it doesn't have to find the next element in the container - a potentially costly op-

eration.

Notes:
voi d erase_return_void(const_iterator

Only throws an exception if it is thrown by hasher or key_equal .
In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might

Erase the element pointed to by posi ti on.
not be true in other implementations.

Throws:
This method is now deprecated, use quick_return instead. Although be warned that as that isn't standardized yet, it

could also change.

Notes:

void clear();
size()
Never throws an exception.

Erases all elements in the container.
For a discussion of the behavior when allocators aren't equal see the implementation details.

Postconditions:

Throws:

voi d swap(unordered_set &) ;
If the allocators are equal, doesn't throw an exception unless it is thrown by the copy constructor or copy assignment
operator of key_equal or hasher.

Throws:
const ;

Notes:
unor der ed_set observers
hasher hash_function()
Returns: The container's hash function.
key_eq() const;
The container's key equality predicate
22
httpo://www.renderx.com/

key_equal

Returns:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

unor der ed_set lookup

L iterator find(key_type const& k);
const _iterator find(key_type const& k) const;
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenanme Conpati bl ePredi cat e>
iterator find(ConpatibleKey const& k, Conpatibl eHash const & hash,
Conpati bl ePredi cate const& eq);
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenanme Conpati bl ePredi cat e>
const _iterator
find(Conpati bl eKey const& k, Conpatibl eHash const & hash,
Conpat i bl ePredi cate const& eq) const;

Returns: An iterator pointing to an element with key equivalent to k, or b. end() if no such element exists.

Notes: The templated overloads are a non-standard extensions which allows you to use a compatible hash function and
equality predicate for a key of a different type in order to avoid an expensive type cast. In general, its use is not
encouraged.

size_type count(key_type consté& k) const;
Returns: The number of elements with key equivalent to k.
3.

std::pair<iterator, iterator> equal _range(key_type consté& Kk);
std:: pair<const_iterator, const_iterator> equal _range(key_type const& k) const;

Returns: A range containing all elements with key equivalent to k. If the container doesn't container any such elements, returns
std:: nmake_pair(b.end(),b.end()).

unor der ed_set bucket interface

size_type bucket _count() const;

Returns: The number of buckets.
2. . _
si ze_type nmax_bucket _count () const;
Returns: An upper bound on the number of buckets.
3. . . .
si ze_type bucket _size(size_type n) const;
Requires: n < bucket _count ()
Returns: The number of elements in bucket n.
4, .
size_type bucket (key_type const& k) const;
Returns: The index of the bucket which would contain an element with key k.
Postconditions: The return value is less than bucket _count ()
5.

| ocal _iterator begin(size_type n);
const | ocal _iterator begin(size_type n) const;

Requires: n shall be intherange [0, bucket count()).
Returns: A local iterator pointing the first element in the bucket with index n.
23

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

| ocal _iterator end(size_type n);
const _local _iterator end(size_type n) const;

Requires: n shall be intherange [0, bucket _count()).
Returns: A local iterator pointing the 'one past the end' element in the bucket with index n.
7.
const _local _iterator chegin(size_type n) const;
Requires: n shall be in the range [0, bucket _count()).
Returns: A constant local iterator pointing the first element in the bucket with index n.
8. . . _
const _| ocal _iterator cend(size_type n);
Requires: n shall be in the range [0, bucket _count()).
Returns: A constant local iterator pointing the 'one past the end' element in the bucket with index n.

unor der ed_set hash policy

float | oad_factor() const;

Returns: The average number of elements per bucket.
float max_| oad_factor() const;

Returns: Returns the current maximum load factor.
voi d max_|l oad_factor(float z);

Effects: Changes the container's maximum load factor, using z as a hint.
voi d rehash(size_type n);

Changes the number of buckets so that there at least n buckets, and so that the load factor is less than the maximum load factor.

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-
ison function.

unor der ed_set Equality Comparisons

t enpl at e<t ypenane Val ue, typenane Hash, typenane Pred, typenane Alloc>
bool operator==(unordered_set<Val ue, Hash, Pred, Alloc> const& x,
unor dered_set <Val ue, Hash, Pred, Alloc> const& y);

Notes: This is a boost extension.

Behavior is undefined if the two containers don't have equivalent equality predicates.

t enpl at e<t ypenane Val ue, typenane Hash, typenane Pred, typenane Alloc>
bool operator!=(unordered_set<Val ue, Hash, Pred, Alloc> const& x,
unor der ed_set <Val ue, Hash, Pred, Alloc> const& y);

Notes: This is a boost extension.

24

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Behavior is undefined if the two containers don't have equivalent equality predicates.

unor der ed_set swap

tenpl at e<t ypenane Val ue, typename Hash, typenane Pred, typenane Al oc>
voi d swap(unordered_set <Val ue, Hash, Pred, Alloc>& x,
unor der ed_set <Val ue, Hash, Pred, Alloc>& vy);

Effects: X. swap(y)

Throws: If the allocators are equal, doesn't throw an exception unless it is thrown by the copy constructor or copy assignment
operator of Hash or Pr ed.

Notes: For a discussion of the behavior when allocators aren't equal see the implementation details.

25

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.Unordered

Class template unordered_multiset

boost::unordered_multiset — An unordered associative container that stores values. The same key can be stored multiple times.
Synopsis

/1 I'n header: <boost/unordered_set. hpp>

t enpl at e<t ypenane Val ue, typenane Hash = boost:: hash<Val ue>,
typenane Pred = std::equal _to<Val ue>,
typenane Alloc = std::allocator<Value> >
cl ass unordered_nultiset {
public:
/'l types
t ypedef Val ue key_type;
t ypedef Val ue val ue_type;
t ypedef Hash hasher;
t ypedef Pred key_equal ;
typedef Alloc allocator_type;
typedef typenane allocator_type:: pointer pointer;
typedef typenane allocator_type::const_pointer const_pointer;
typedef typenane allocator_type::reference reference;
typedef typenane allocator_type::const_reference const_reference;
typedef inplenmentation-defined size_type;
typedef inplenmentation-defined difference_type;
typedef inplenmentation-defined iterator;
typedef inplenmentation-defined const_iterator;
typedef inplenmentation-defined |ocal _iterator;
t ypedef inpl enmentation-defined const_local _iterator;

/1 construct/copy/destruct
explicit unordered_nultiset(size_type = inplenentation-defined,
hasher const& = hasher (),
key equal const& = key_equal (),
al l ocator_type const& = allocator_type());
t enpl at e<t ypenane | nputlterator>
unordered_nultiset(lnputlterator, Inputlterator,
size_type = inplenentation-defined,
hasher const& = hasher (),
key_equal const& = key_equal (),
al l ocator _type const& = allocator_type());
unordered_nul tiset(unordered_nultiset const&);
unordered_nul tiset(unordered_nultiset &&);
explicit unordered_multiset(Allocator constg&);
unordered_nul tiset(unordered_nultiset const& Allocator const&);
~unordered_nultiset();
unordered_nul ti set & operator=(unordered_mnultiset const&);
unordered_nul ti set & operator=(unordered_nultiset &&);
al l ocator _type get_allocator() const;

/'l size and capacity

bool enpty() const;
size_type size() const;
size_type nmax_size() const;

/] iterators

iterator begin();

const __iterator begin() const;
iterator end();

const _iterator end() const;
const _iterator cbhegin() const;
const _iterator cend() const;

26

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

/1 modifiers

tenpl ate<typenane... Args> iterator enplace(Args&&. ..);
tenpl ate<typenane... Args> iterator enplace_hint(const_iterator, Args&& ..);
iterator insert(value_type const&);

iterator insert(const_iterator, value_type const&);

tenpl at e<typenane Inputlterator> void insert(lnputlterator, Inputlterator);
iterator erase(const_iterator);

size_type erase(key_type const&);

iterator erase(const_iterator, const_iterator);

voi d qui ck_erase(const _iterator);

voi d erase_return_voi d(const_iterator);

void clear();

voi d swap(unordered_multiset&);

/| observers
hasher hash_function() const;
key_equal key_eq() const;

/'l 1 ookup
iterator find(key_type const&);
const __iterator find(key_type const& const;
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenane Conpati bl ePr edi cat e>
iterator find(Conpatibl eKey consté& Conpati bl eHash const &,
Conpati bl ePredi cate const &) ;
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenane Conpati bl ePr edi cat e>
const _iterator
find(Conpati bl eKey const & Conpati bl eHash const &,
Conpati bl ePredi cate const&) const;
size_type count (key_type const&) const;
std::pair<iterator, iterator> equal _range(key_type const&);

std::pair<const_iterator, const_iterator> equal _range(key_type const&) const;

/'l bucket interface

si ze_type bucket _count() const;

size_type nmax_bucket _count () const;

si ze_type bucket _size(size_type) const;

si ze_type bucket (key_type const&) const;

| ocal _iterator begin(size_type);

const _local _iterator begin(size_type) const;
| ocal _iterator end(size_type);

const _local _iterator end(size_type) const;
const _local _iterator chegin(size_type) const;
const _local _iterator cend(size_type);

/'l hash policy

float | oad_factor() const;
float max_| oad_factor() const;
voi d nax_|l oad_factor(float);
voi d rehash(size_type);

};

/1 Equality Conparisons
t enpl at e<t ypenane Val ue, typenane Hash, typenane Pred, typenane Al oc>
bool operator==(unordered_nultiset<Value, Hash, Pred, Alloc> constg&,
unordered_nul ti set <Val ue, Hash, Pred, Alloc> const&);
t enpl at e<t ypenane Val ue, typenanme Hash, typenane Pred, typenane Al oc>
bool operator!=(unordered_nultiset<Value, Hash, Pred, Alloc> constg&,

27

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered
Hash, Pred, Alloc> const&);

typenane All oc>

unor dered_nul ti set <Val ue,

t ypenanme Pred,
Hash, Pred, Alloc>g,
Hash, Pred, Alloc>&);

typename Hash,

/'l swap

t enpl at e<t ypenane Val ue,

voi d swap(unordered_nul ti set <Val ue,
unor dered_nul ti set <Val ue,

Description
Based on chapter 23 of the working draft of the C++ standard [n2960]. But without the updated rules for allocators.

Template Parameter s

Value
Hash

A unary function object type that acts a hash function for a Val ue. It takes a single argument of type Val ue and returns

Value must be Assignable and CopyConstructible
A binary function object that implements an equivalence relation on values of type Val ue. A binary function object that
induces an equivalence relation on values of type Key. It takes two arguments of type Key and returns a value of type

Pred
bool.

An allocator whose value type is the same as the container's value type.
The number of buckets can be automatically increased by a call to insert, or as the result of calling rehash.

Alloc

a value of type std::size_t.
The elements are organized into buckets. Keys with the same hash code are stored in the same bucket and elements with equivalent
keys are stored next to each other.

unordered_mul ti set public types

1. typedef Value key_type;
typedef Value value_type;

2.
typedef Hash hasher;

typedef Pred key_equal;

typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;

typedef typename allocator_type::const_pointer const_pointer;

typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;

8.
9.

10. typedef implementation-defined size_type;
An unsigned integral type.
size_type can represent any non-negative value of difference_type.
11 typedef implementation-defined difference_type;

A signed integral type.
Is identical to the difference type of iterator and const_iterator.
28

render

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2960.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

12 typedef implementation-defined iterator;
A constant iterator whose value type is value_type.
The iterator category is at least a forward iterator.

Convertible to const_iterator.

13 typedef implementation-defined const _iterator;
A constant iterator whose value type is value_type.

The iterator category is at least a forward iterator.

14. typedef implementation-defined local_iterator;

An iterator with the same value type, difference type and pointer and reference type as iterator.
A constant iterator with the same value type, difference type and pointer and reference type as const_iterator.

= inmpl emrent ati on- defi ned,
= hasher (),

= key_equal (),

= allocator_type());

A local_iterator object can be used to iterate through a single bucket.

15. typedef implementation-defined const_local _iterator;
A const_local_iterator object can be used to iterate through a single bucket.
unordered_mul ti set public construct/copy/destruct
explicit unordered_nultiset(size_type n
hasher const & hf
key_equal const& eq
al | ocator_type const& a
Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-

I,

I nputlterator

=0

const & hf

Postconditions: si ze()
t enpl at e<t ypenane | nputlterator>
size_type n = inpl enentation-defined,
= hasher (),
const & eq = key_equal (),
Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-

locator and a maximum load factor of 1.0.
al l ocator _type const& a = allocator_type());

unordered_mnul tiset(Inputlterator f,
hasher
key_equal
locator and a maximum load factor of 1.0 and inserts the elements from [f, I) into it.
unordered_rul tiset(unordered nmultiset consté&);
The copy constructor. Copies the contained elements, hash function, predicate, maximum load factor and allocator.

val ue_t ype is copy constructible

Requires:
httpo://www.renderx.com/

unordered_nul tiset(unordered_nultiset &&);
29

This is emulated on compilers without rvalue references.
val ue_t ype is move constructible. (TODO: This is not actually required in this implementation).

The move constructor.

Notes:
Requires:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

const& a);

Al | ocat or

explicit unordered_nultiset(Allocator const& a);
const & X,
Constructs an container, copying x's contained elements, hash function, predicate, maximum load factor, but using allocator a.

Constructs an empty container, using allocator a.

unordered_nul tiset (unordered_mul tiset

~unordered_nultiset();

The destructor is applied to every element, and all memory is deallocated
unordered_nul tiset & operator=(unordered_multiset const&);

ordered_nul tiset) inorderto emulate move semantics.
&&);

Notes:
On compilers without rvalue references, there is a single assignment operator with the signature oper at or =(un-

The assignment operator. Copies the contained elements, hash function, predicate and maximum load factor but not the allocator.

val ue_t ype is copy constructible

Notes:

Requires:
unordered_nul tiset& operator=(unordered_nultiset

On compilers without rvalue references, there is a single assignment operator with the signature oper at or =(un-

ordered_nul tiset) in order to emulate move semantics.

The move assignment operator.
val ue_t ype is move constructible. (TODO: This is not actually required in this implementation).
const;

Notes:
Requires:

al l ocator _type get_allocator()
unordered_mul ti set size and capacity

const ;

enpty()
=0

bool
size()
end())

const ;

Returns:
size_type size()
std:: di stance(begin(),

const ;

Returns:
size_type max_si ze()
si ze()) of the largest possible container.
An iterator referring to the first element of the container, or if the container is empty the past-the-end value for the

Returns:
unordered_nul ti set iterators
const ;

iterator begin();
const _iterator begin()
container.
30
httpo://www.renderx.com/

Returns:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

iterator end();

const _iterator end() const;
An iterator which refers to the past-the-end value for the container.

A constant iterator referring to the first element of the container, or if the container is empty the past-the-end value

Returns:
args);

const _iterator cbegin() const;
A constant iterator which refers to the past-the-end value for the container.

for the container.

Returns:
const _iterator cend() const;
Args> iterator enplace(Args&&. .

Returns:
unordered_nul ti set modifiers
t enpl at e<t ypenane. . .
Inserts an object, constructed with the arguments ar gs, in the container.
An iterator pointing to the inserted element.
If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10 argu-

If an exception is thrown by an operation other than a call to hasher the function has no effect.
args);

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

Returns:
Throws:
factor.

Notes:
Pointers and references to elements are never invalidated.

ments, with no support for rvalue references or move semantics.
Argsé&&. .

Args>

t enpl at e<t ypenane. .
iterator enplace_hint(const_iterator hint,
Inserts an object, constructed with the arguments ar gs, in the container.
If an exception is thrown by an operation other than a call to hasher the function has no effect.
Boost.Unordered supports is to point to an existing element with the same value.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

hint is a suggestion to where the element should be inserted.
An iterator pointing to the inserted element.
The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way that

Returns:
Throws:

Notes:

factor.
Pointers and references to elements are never invalidated.

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10 argu-

ments, with no support for rvalue references or move semantics.

httpo://www.renderx.com/

iterator insert(value_type const& obj);
31

An iterator pointing to the inserted element.
If an exception is thrown by an operation other than a call to hasher the function has no effect.

Inserts obj in the container.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

Returns:
Throws:
Notes:
factor.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Pointers and references to elements are never invalidated.
val ue_type const & obj);

iterator insert(const_iterator hint,
Inserts obj in the container.
If an exception is thrown by an operation other than a call to hasher the function has no effect.

hint is a suggestion to where the element should be inserted.
An iterator pointing to the inserted element.
The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way that
Boost.Unordered supports is to point to an existing element with the same value.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

Returns:
Throws:

Notes:

factor.
Pointers and references to elements are never invalidated.
Inputlterator |ast);

t enpl at e<t ypenane | nputlterator>
void insert(lnputlterator first,
When inserting a single element, if an exception is thrown by an operation other than a call to hasher the function

Inserts a range of elements into the container.

has no effect.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
Pointers and references to elements are never invalidated.

Throws:
position);

Notes:
factor.
iterator erase(const _iterator
The iterator following posi t i on before the erasure.
Only throws an exception if it is thrown by hasher or key_equal .
When the number of elements is a lot smaller than the number of buckets this function can be very inefficient as
it has to search through empty buckets for the next element, in order to return the iterator. The method quick_erase

Erase the element pointed to by posi ti on.
In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might

Returns:

Throws:
not be true in other implementations.

is faster, but has yet to be standardized.
| ast);

const _iterator

Notes:
size_type erase(key_type const& k);
Only throws an exception if it is thrown by hasher or key_equal .

Erase all elements with key equivalent to k.
The number of elements erased.

Throws:
Erases the elements in the range from first tol ast.
The iterator following the erased elements - i.e. | ast .

Returns:
iterator erase(const _iterator first,
Only throws an exception if it is thrown by hasher or key_equal .
httpo://www.renderx.com/

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might

not be true in other implementations.
32

Returns:
Throws:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

position);

voi d qui ck_erase(const_iterator
Only throws an exception if it is thrown by hasher or key_equal .

Throws:

Notes:

Erase the element pointed to by posi ti on.

not be true in other implementations.
position);

As it hasn't been standardized, it's likely that this may change in the future.

eration.

voi d erase_return_voi d(const _iterator
Only throws an exception if it is thrown by hasher or key_equal .

Erase the element pointed to by posi ti on.

Throws:

not be true in other implementations.
could also change.

Notes:
void clear();
Erases all elements in the container.
Postconditions: si ze()

Never throws an exception.
voi d swap(unordered_multiset&);

Throws:
operator of key_equal or hasher.

Throws:
const ;

Notes:
unordered nul tiset observers
hasher hash_function()

const ;

1
Returns:
key_equal

Returns:

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
This method is faster than erase as it doesn't have to find the next element in the container - a potentially costly op-

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might

The container's hash function.

key_eq()
The container's key equality predicate

This method is now deprecated, use quick_return instead. Although be warned that as that isn't standardized yet, it

If the allocators are equal, doesn't throw an exception unless it is thrown by the copy constructor or copy assignment

For a discussion of the behavior when allocators aren't equal see the implementation details.

33

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

unordered_mul ti set lookup

L iterator find(key_type const& k);
const _iterator find(key_type const& k) const;
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenanme Conpati bl ePredi cat e>
iterator find(ConpatibleKey const& k, Conpatibl eHash const & hash,
Conpati bl ePredi cate const& eq);
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenanme Conpati bl ePredi cat e>
const _iterator
find(Conpati bl eKey const& k, Conpatibl eHash const & hash,
Conpat i bl ePredi cate const& eq) const;

Returns: An iterator pointing to an element with key equivalent to k, or b. end() if no such element exists.

Notes: The templated overloads are a non-standard extensions which allows you to use a compatible hash function and
equality predicate for a key of a different type in order to avoid an expensive type cast. In general, its use is not
encouraged.

size_type count(key_type consté& k) const;
Returns: The number of elements with key equivalent to k.
3.

std::pair<iterator, iterator> equal _range(key_type consté& Kk);
std:: pair<const_iterator, const_iterator> equal _range(key_type const& k) const;

Returns: A range containing all elements with key equivalent to k. If the container doesn't container any such elements, returns
std:: nmake_pair(b.end(),b.end()).

unor dered_nul ti set bucket interface

size_type bucket _count() const;

Returns: The number of buckets.
2. . _
si ze_type nmax_bucket _count () const;
Returns: An upper bound on the number of buckets.
3. . . .
si ze_type bucket _size(size_type n) const;
Requires: n < bucket _count ()
Returns: The number of elements in bucket n.
4, .
size_type bucket (key_type const& k) const;
Returns: The index of the bucket which would contain an element with key k.
Postconditions: The return value is less than bucket _count ()
5.

| ocal _iterator begin(size_type n);
const | ocal _iterator begin(size_type n) const;

Requires: n shall be intherange [0, bucket count()).
Returns: A local iterator pointing the first element in the bucket with index n.
34

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

| ocal _iterator end(size_type n);
const _local _iterator end(size_type n) const;

Requires: n shall be intherange [0, bucket _count()).
Returns: A local iterator pointing the 'one past the end' element in the bucket with index n.
7.
const _local _iterator chegin(size_type n) const;
Requires: n shall be in the range [0, bucket _count()).
Returns: A constant local iterator pointing the first element in the bucket with index n.
8. . . _
const _| ocal _iterator cend(size_type n);
Requires: n shall be in the range [0, bucket _count()).
Returns: A constant local iterator pointing the 'one past the end' element in the bucket with index n.

unor der ed_mul ti set hash policy

float | oad_factor() const;

Returns: The average number of elements per bucket.
float max_| oad_factor() const;

Returns: Returns the current maximum load factor.
voi d max_|l oad_factor(float z);

Effects: Changes the container's maximum load factor, using z as a hint.
voi d rehash(size_type n);

Changes the number of buckets so that there at least n buckets, and so that the load factor is less than the maximum load factor.

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-
ison function.

unor der ed_mul ti set Equality Comparisons

t enpl at e<t ypenane Val ue, typenane Hash, typenane Pred, typenane Alloc>
bool operator==(unordered_mnul tiset<Value, Hash, Pred, Alloc> const& X,
unordered_nul ti set <Val ue, Hash, Pred, Alloc> const& y);

Notes: This is a boost extension.

Behavior is undefined if the two containers don't have equivalent equality predicates.

t enpl at e<t ypenane Val ue, typenane Hash, typenane Pred, typenane Alloc>
bool operator!=(unordered_multiset<Value, Hash, Pred, Alloc> const& X,
unordered_nul ti set <Val ue, Hash, Pred, Alloc> const& y);

Notes: This is a boost extension.

35

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Behavior is undefined if the two containers don't have equivalent equality predicates.

unordered_nul ti set swap

tenpl at e<t ypenane Val ue, typename Hash, typenane Pred, typenane Al oc>
voi d swap(unordered_nul ti set<Val ue, Hash, Pred, Alloc>& x,
unordered_nul ti set <Val ue, Hash, Pred, Alloc>& vy);

Effects: X. swap(y)

Throws: If the allocators are equal, doesn't throw an exception unless it is thrown by the copy constructor or copy assignment
operator of Hash or Pr ed.

Notes: For a discussion of the behavior when allocators aren't equal see the implementation details.

Header <boost/unordered_map.hpp>

namespace boost {
t enpl at e<t ypenanme Key, typenanme Mapped, typenane Hash = boost: : hash<Key>,
typenanme Pred = std::equal _t o<Key>,
typenanme Alloc = std::allocator<std::pair<Key const, Mpped> > >
cl ass unordered_nap;
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenanme All oc>
bool operator==(unordered_map<Key, Mpped, Hash, Pred, Alloc> const§g&,
unor der ed_map<Key, Mapped, Hash, Pred, Alloc> constg&);
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenanme All oc>
bool operator!=(unordered_map<Key, Mpped, Hash, Pred, Alloc> constg&,
unor der ed_map<Key, Mapped, Hash, Pred, Alloc> constg&);
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenanme All oc>
voi d swap(unordered_rmap<Key, Mapped, Hash, Pred, Alloc>&,
unor der ed_map<Key, Mapped, Hash, Pred, Alloc>&);
t enpl at e<t ypenanme Key, typenane Mapped, typenane Hash = boost: : hash<Key>,
typenane Pred = std::equal _t o<Key>,
typenane Alloc = std::allocator<std::pair<Key const, Mpped> > >
cl ass unordered_nul timap;
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenanme All oc>
bool operator==(unordered_mnul ti map<Key, Mapped, Hash, Pred, Al oc> const&,
unor dered_nul ti map<Key, Mapped, Hash, Pred, Al oc> const&);
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenanme All oc>
bool operator!=(unordered_mnulti map<Key, Mapped, Hash, Pred, Al oc> const&,
unor dered_nul ti map<Key, Mapped, Hash, Pred, Al loc> const&);
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenanme All oc>
voi d swap(unordered_nul ti map<Key, Mapped, Hash, Pred, Al oc>&,
unor dered_nul ti map<Key, Mapped, Hash, Pred, Alloc>&);

36

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../boost/unordered_map.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Class template unordered_map

boost::unordered_map — An unordered associative container that associates unique keys with another value.
Synopsis

/1 I'n header: <boost/unordered_nap. hpp>
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash = boost:: hash<Key>,
typenane Pred = std::equal _to<Key>,
typenane Alloc = std::allocator<std::pair<Key const,
cl ass unordered_map {

Mapped> > >

public:
/'l types
typedef Key key_type;
typedef std:: pair<Key const, Mapped> val ue_type;
t ypedef Mapped nmapped_type;
t ypedef Hash hasher;
typedef Pred key_equal ;
typedef Alloc allocator_type;
typedef typenane allocator_type:: pointer pointer;
typedef typenane allocator_type::const_pointer const_pointer;
typedef typenane allocator_type::reference reference;
typedef typenane allocator_type::const_reference const_reference;
typedef inpl enmentation-defined size_type;
typedef inplenmentation-defined difference_type;
typedef inplenmentation-defined iterator;
typedef inplenmentation-defined const_iterator;
typedef inplenmentation-defined |ocal _iterator;
t ypedef inplenmentation-defined const_|ocal _iterator;

/1 construct/copy/destruct
explicit unordered_map(size_type = inplenentation-defined,
hasher const& = hasher (),
key_equal const& = key_equal (),
al l ocator _type const& = allocator_type());
t enpl at e<t ypenane | nputlterator>
unordered_map(lnputlterator, Inputlterator,
size_type = inpl enentation-defined,
hasher const& = hasher (), key_equal const& = key_equal (),
al l ocator _type const& = allocator_type());
unor der ed_map(unordered_nmap const &) ;
unor der ed_nmap(unordered_map &&);
explicit unordered_map(All ocator const&);
unor der ed_map(unordered_nmap const &, Allocator const&);
~unor dered_map() ;
unor der ed_nmap& oper at or =(unor dered_nap const &) ;
unor der ed_mapé& oper at or =(unor dered_map &&);
al l ocator _type get_allocator() const;

/'l size and capacity

bool enpty() const;
size_type size() const;
size_type nmax_size() const;

/] iterators
iterator begin();

3
i

const _iterator

iterator end();

const _iterator
const _iterator
const _iterator

begi n() const;

end() const;
cbegi n() const;
cend() const;

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.Unordered

/1 modifiers

tenpl ate<typenane... Args> std::pair<iterator, bool> enplace(Args&&. ..);
tenpl ate<typenane... Args> iterator enplace_hint(const_iterator, Args&& ..);
std::pair<iterator, bool> insert(val ue_type const&);

iterator insert(const_iterator, value_type const&);

tenpl at e<typenane Inputlterator> void insert(lnputlterator, Inputlterator);
iterator erase(const_iterator);

size_type erase(key_type const&);

iterator erase(const_iterator, const_iterator);

voi d qui ck_erase(const _iterator);

voi d erase_return_voi d(const_iterator);

void clear();

voi d swap(unordered_map&) ;

/| observers
hasher hash_function() const;
key_equal key_eq() const;

/'l 1 ookup
iterator find(key_type const&);
const __iterator find(key_type const& const;
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenane Conpati bl ePr edi cat e>
iterator find(Conpatibl eKey consté& Conpati bl eHash const &,
Conpati bl ePredi cate const &) ;
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenane Conpati bl ePr edi cat e>
const _iterator
find(Conpati bl eKey const & Conpati bl eHash const &,
Conpati bl ePredi cate const&) const;
size_type count (key_type const&) const;
std::pair<iterator, iterator> equal _range(key_type const&);
std::pair<const_iterator, const_iterator> equal _range(key_type const&) const;
nmapped_t ype& operator|[] (key_type const&);
Mapped& at (key_type const &) ;
Mapped const & at (key_type const&) const;

/'l bucket interface

si ze_type bucket _count() const;

size_type nmax_bucket _count () const;

si ze_type bucket _size(size_type) const;

si ze_type bucket (key_type consté&) const;

| ocal _iterator begin(size_type);

const _local _iterator begin(size_type) const;
| ocal _iterator end(size_type);

const _local _iterator end(size_type) const;
const _local _iterator chegin(size_type) const;
const _local _iterator cend(size_type);

/'l hash policy

float | oad_factor() const;
float max_| oad_factor() const;
voi d nax_|l oad_factor(float);
voi d rehash(size_type);

};

/1 Equality Conparisons
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenane All oc>
bool operator==(unordered_nap<Key, Mapped, Hash, Pred, Alloc> constg&,
unor der ed_map<Key, Mapped, Hash, Pred, Alloc> const&);
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,

38

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

oper at or! =(unor der ed_nmap<Key, Mapped, Hash, Pred, Alloc> constg&,
unor der ed_map<Key, Mapped, Hash, Pred, Alloc> const&)
typenane Hash, typenane Pred,

typenane All oc>
typenane Mapped,

voi d swap(unordered_map<Key, Mapped, Hash, Pred, Alloc>§&,
unor der ed_map<Key, Mapped, Hash, Pred, Alloc>&);

bool
Based on chapter 23 of the working draft of the C++ standard [n2960]. But without the updated rules for allocators.

/'l swap
t enpl at e<t ypenane Key,
typenane All oc>

Description
Key must be Assignable and CopyConstructible.

Template Parameters
Key
Mapped Mapped must be CopyConstructible
Hash

A unary function object type that acts a hash function for a Key. It takes a single argument of type Key and returns a

value of type std::size t.
A binary function object that implements an equivalence relation on values of type Key. A binary function object that

induces an equivalence relation on values of type Key. It takes two arguments of type Key and returns a value of type

An allocator whose value type is the same as the container's value type.

Alloc
The elements are organized into buckets. Keys with the same hash code are stored in the same bucket.

Pred
bool.
The number of buckets can be automatically increased by a call to insert, or as the result of calling rehash.

typedef Key key_type;

1

unor der ed_map public types
typedef std::pair<Key const, Mapped> value_type;

2.
typedef Mapped mapped_type;

typedef Hash hasher;
typedef Pred key_equal;

typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;

8

typedef typename allocator_type::reference reference;

httpo://www.renderx.com/

10. typedef typename allocator_type::const_reference const_reference;
39

9.
11 typedef implementation-defined size_type;

An unsigned integral type.

size_type can represent any non-negative value of difference_type.

render

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2960.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

12 typedef implementation-defined difference_type;
Is identical to the difference type of iterator and const_iterator.

A signed integral type.

13 typedef implementation-defined iterator;
A iterator whose value type is value_type.
The iterator category is at least a forward iterator.

Convertible to const_iterator.

14. typedef implementation-defined const _iterator;
A constant iterator whose value type is value_type.

The iterator category is at least a forward iterator.

An iterator with the same value type, difference type and pointer and reference type as iterator.

A local_iterator object can be used to iterate through a single bucket.

15. typedef implementation-defined local_iterator;

16. typedef implementation-defined const_local_iterator;

A constant iterator with the same value type, difference type and pointer and reference type as const_iterator.

A const_local_iterator object can be used to iterate through a single bucket.

unor der ed_map public construct/copy/destruct
explicit unordered_map(size_type n = inplenentation-defined,

hasher const& hf = hasher(),
key_equal const& eq = key_equal (),
al l ocator_type const& a = allocator_type());
Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-

I nputlterator

locator and a maximum load factor of 1.0.
= hasher (),

si ze()
size_type n = inplenentation-defined,
key_equal const& eq = key_equal (),

locator and a maximum load factor of 1.0 and inserts the elements from [f, I) into it.

al l ocator_type const& a = allocator_type());
The copy constructor. Copies the contained elements, hash function, predicate, maximum load factor and allocator.

Postconditions:
tenpl at e<t ypenane | nputlterator>
unordered_map(Il nputlterator f,
hasher const & hf
Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-

httpo://www.renderx.com/

unor der ed_nap(unor dered_nmap const &) ;
40

val ue_t ype is copy constructible

3.

Requires:
unor der ed_map(unordered_map &&);

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

const& a);

This is emulated on compilers without rvalue references.
val ue_t ype is move constructible. (TODO: This is not actually required in this implementation).

Al | ocat or

Notes:
Requires:

The move constructor.
explicit unordered_map(All ocator consté& a)
Constructs an empty container, using allocator a.

unor der ed_nmap(unor dered_nmap const & X,
Constructs an container, copying x's contained elements, hash function, predicate, maximum load factor, but using allocator a.

~unor dered_map() ;
The destructor is applied to every element, and all memory is deallocated

Notes:

unor der ed_map& oper at or =(unor der ed_map const &)

The assignment operator. Copies the contained elements, hash function, predicate and maximum load factor but not the allocator.
On compilers without rvalue references, there is a single assignment operator with the signature oper at or =(un-

order ed_map) in order to emulate move semantics.

val ue_t ype is copy constructible

Notes:

Requires:
unor der ed_map& oper at or =(unor dered_map &&);

On compilers without rvalue references, there is a single assignment operator with the signature oper at or =(un-
const ;

or der ed_map) in order to emulate move semantics.

The move assignment operator.
val ue_t ype is move constructible. (TODO: This is not actually required in this implementation).

Notes:
Requires:
al l ocator_type get_allocator()

unor der ed_map Size and capacity
enpty() const;
= 0
end())

bool
si ze()
const ;

Returns:
size_type size()
std:: di stance(begin(),

const ;

Returns:
size_type max_si ze()
Returns: si ze() of the largest possible container.
unor der ed_map iterators
const ;
41
httpo://www.renderx.com/

iterator begin();
const __iterator begin()

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

An iterator referring to the first element of the container, or if the container is empty the past-the-end value for the

Returns:
container.
iterator end();
const _iterator end() const;
An iterator which refers to the past-the-end value for the container.
A constant iterator referring to the first element of the container, or if the container is empty the past-the-end value
args) ;

Returns:
const _iterator cbegin() const;

bool > enpl ace(Args&&. .

for the container.
A constant iterator which refers to the past-the-end value for the container.

Returns:
const _iterator cend() const;
Inserts an object, constructed with the arguments ar gs, in the container if and only if there is no element in the container with

Args> std::pair<iterator,

t enpl at e<t ypenane. .

1

Returns:
unor der ed_map modifiers
The bool component of the return type is true if an insert took place.

If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

an equivalent key.
with equivalent key.

Returns:

If an exception is thrown by an operation other than a call to hasher the function has no effect.
args);

Ar gs&&. .

Pointers and references to elements are never invalidated.
If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10 argu-

Throws:
factor.
ments, with no support for rvalue references or move semantics.
Args>

Notes:
Inserts an object, constructed with the arguments ar gs, in the container if and only if there is no element in the container with

t enpl at e<t ypenane. .

iterator enplace_hint(const_iterator hint,
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

an equivalent key.

with equivalent key.
If an exception is thrown by an operation other than a call to hasher the function has no effect.

Returns:
Throws:
Notes:

The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way that

hint is a suggestion to where the element should be inserted.
Boost.Unordered supports is to point to an existing element with the same key.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.
42

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10 argu-

ments, with no support for rvalue references or move semantics.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

std::pair<iterator,

3. bool > insert(val ue_type consté& obj);
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

Inserts obj in the container if and only if there is no element in the container with an equivalent key.

Returns:
val ue_type const & obj);

with equivalent key.
If an exception is thrown by an operation other than a call to hasher the function has no effect.

The bool component of the return type is true if an insert took place.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
Pointers and references to elements are never invalidated.
iterator insert(const_iterator hint,

Throws:
factor.
Inserts obj in the container if and only if there is no element in the container with an equivalent key.

Notes:
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element
The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way that

with equivalent key.
If an exception is thrown by an operation other than a call to hasher the function has no effect.

hint is a suggestion to where the element should be inserted.

Returns:
| ast);

Throws:

Notes:
Boost.Unordered supports is to point to an existing element with the same key.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
I nputlterator

Inserts a range of elements into the container. Elements are inserted if and only if there is no element in the container with an

factor.
Pointers and references to elements are never invalidated.

t enpl at e<t ypenane | nputlterator>
void insert(lnputlterator first,

5.
equivalent key.
When inserting a single element, if an exception is thrown by an operation other than a call to hasher the function

Throws:
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

has no effect.
Notes:
factor.
Pointers and references to elements are never invalidated.
position);

iterator erase(const_iterator

Only throws an exception if it is thrown by hasher or key_equal .
it has to search through empty buckets for the next element, in order to return the iterator. The method quick_erase

Erase the element pointed to by posi ti on.
In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might

not be true in other implementations.

Returns: The iterator following posi t i on before the erasure.
Throws:
When the number of elements is a lot smaller than the number of buckets this function can be very inefficient as

httpo://www.renderx.com/

is faster, but has yet to be standardized.
43

Notes:
size_type erase(key_type const& k);

Erase all elements with key equivalent to k.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

| ast);

Only throws an exception if it is thrown by hasher or key_equal
const _iterator

The number of elements erased.

Throws:
Erases the elements in the range from first tol ast.
The iterator following the erased elements - i.e. | ast .

8

Returns:
iterator erase(const_iterator first,
Only throws an exception if it is thrown by hasher or key_equal

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
position);

Returns:

Throws:
not be true in other implementations.

voi d qui ck_erase(const_iterator
Only throws an exception if it is thrown by hasher or key_equal .
This method is faster than erase as it doesn't have to find the next element in the container - a potentially costly op-

Erase the element pointed to by posi ti on.

not be true in other implementations.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
As it hasn't been standardized, it's likely that this may change in the future.

Throws:
position);

eration.

Notes:
voi d erase_return_voi d(const_iterator
Only throws an exception if it is thrown by hasher or key_equal .

10.
Erase the element pointed to by posi ti on.

not be true in other implementations.

Throws:
In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
This method is now deprecated, use quick_return instead. Although be warned that as that isn't standardized yet, it

could also change.

Notes:
void clear();
si ze()
Never throws an exception.

Erases all elements in the container.
Postconditions:
For a discussion of the behavior when allocators aren't equal see the implementation details.

Throws:
voi d swap(unordered_map&) ;

= 0
If the allocators are equal, doesn't throw an exception unless it is thrown by the copy constructor or copy assignment
operator of key_equal or hasher.

Throws:
const ;

Notes:

unor der ed_map observers
hasher hash_function()
The container's hash function.

const;
httpo://www.renderx.com/

Returns:
key_equal key_eq()
44

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

The container's key equality predicate.
const;
typenanme Conpati bl eHash,

iterator find(Conpatibl eKey const& k, Conpati bl eHash const & hash,
typenanme Conpati bl eHash,

Conpati bl ePredi cate const& eq);

1

Returns:
unor der ed_nap lookup
iterator find(key_type const& k);
const_iterator find(key_type const& k)
t enpl at e<t ypenane Conpati bl eKey,
typenane Conpati bl ePredi cat e>

t enpl at e<t ypenane Conpati bl eKey,
typenane Conpati bl ePredi cat e>
const ;

const iterator
Conpati bl ePredi cate const& eq) const;

The templated overloads are a non-standard extensions which allows you to use a compatible hash function and
const ;

find(Conpati bl eKey const & k, Compati bl eHash const & hash,
An iterator pointing to an element with key equivalent to k, or b. end() if no such element exists.
equality predicate for a key of a different type in order to avoid an expensive type cast. In general, its use is not

Returns:
Notes:
encouraged.
size_type count (key_type const & k)
The number of elements with key equivalent to k.
iterator> equal range(key_type consté& k);
const __iterator> equal _range(key_type consté& k)

3.
A range containing all elements with key equivalent to k. If the container doesn't container any such elements, returns

Returns:
std::pair<iterator,
std::pair<const_iterator,
mapped_t ype>(k, mapped_type())

std:: make_pair(b.end(),b.end()).
If the container does not already contain an elements with a key equivalent to k, inserts the value
A reference to x. second where X is the element already in the container, or the newly inserted element with a key

Returns:
mapped_t ype& operator|[] (key_type const& k);
std:: pai r<key_type const,
If an exception is thrown by an operation other than a call to hasher the function has no effect.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

Mappedé& at (key_type const& k) ;
Mapped const & at (key_type const & k) const;

5.

Effects:
Returns:
equivalent to k
Throws:
Notes:
factor.

Pointers and references to elements are never invalidated.

An exception object of type st d: : out _of _r ange if no such element is present.

A reference to x. second where x is the (unique) element whose key is equivalent to k.
This is not specified in the draft standard, but that is probably an oversight. The issue has been raised in comp.std.c++

Returns:
const ;

Throws:

Notes:
unor der ed_map bucket interface

size_type bucket _count ()
httpo://www.renderx.com/

45

The number of buckets.

Returns:

render

http://groups.google.com/group/comp.std.c++/browse_thread/thread/ab7c22a868fd370b
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

si ze_type nmax_bucket _count () const;
Returns: An upper bound on the number of buckets.
si ze_type bucket _size(size_type n) const;
Requires: n < bucket _count ()
Returns: The number of elements in bucket n.
size_type bucket (key_type const& k) const
The index of the bucket which would contain an element with key k.
The return value is less than bucket _count ()

Returns:
Postconditions:
| ocal _iterator begin(size_type n);
const |l ocal _iterator begin(size_type n) const;
n shall be intherange [0, bucket count()).
A local iterator pointing the first element in the bucket with index n.

Returns:
n shall be in the range [0, bucket _count()).

Requires:
| ocal _iterator end(size_type n);
const _| ocal _iterator end(size_type n) const;
A local iterator pointing the 'one past the end' element in the bucket with index n.
const ;

Returns:
n shall be intherange [0, bucket _count()).

Requires:
const _local _iterator chegin(size_type n)
A constant local iterator pointing the first element in the bucket with index n.

Returns:
n shall be in the range [0, bucket _count()).

Requires:
const _|local _iterator cend(size_type n);

8.
A constant local iterator pointing the 'one past the end' element in the bucket with index n

Requires:
Returns:
unor der ed_map hash policy
float |oad_factor() const;
The average number of elements per bucket.

Returns:
max_| oad_factor() const;
Returns the current maximum load factor.

2. fl oat

Changes the container's maximum load factor, using z as a hint.
46

Returns:
void max_| oad factor(float z);

3.
Effects:
voi d rehash(size_type n);

4.

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Changes the number of buckets so that there at least n buckets, and so that the load factor is less than the maximum load factor.

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-
ison function.

unor der ed_map Equality Comparisons

tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenane All oc>
bool operator==(unordered_nmap<Key, Mapped, Hash, Pred, Alloc> const& x,
unor der ed_map<Key, Mapped, Hash, Pred, Alloc> const& y);

Notes: This is a boost extension.

Behavior is undefined if the two containers don't have equivalent equality predicates.

tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenane All oc>
bool operator!=(unordered_nmap<Key, Mapped, Hash, Pred, Alloc> const& x,
unor der ed_map<Key, Mapped, Hash, Pred, Al loc> const& y);

Notes: This is a boost extension.
Behavior is undefined if the two containers don't have equivalent equality predicates.

unor der ed_nap swap

tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenane All oc>
voi d swap(unordered_map<Key, Mapped, Hash, Pred, Alloc>& x,
unor der ed_nmap<Key, Mapped, Hash, Pred, Alloc>& y);

Effects: X. swap(y)

Throws: If the allocators are equal, doesn't throw an exception unless it is thrown by the copy constructor or copy assignment
operator of Hash or Pr ed.

Notes: For a discussion of the behavior when allocators aren't equal see the implementation details.

47

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.Unordered

Class template unordered_multimap

boost::unordered_multimap — An unordered associative container that associates keys with another value. The same key can be
stored multiple times.

Synopsis

/1 I'n header: <boost/unordered_nap. hpp>

tenpl at e<t ypenane Key, typenane Mapped, typenane Hash = boost:: hash<Key>,
typenane Pred = std::equal _to<Key>,
typenane Alloc = std::allocator<std::pair<Key const, Mpped> > >
cl ass unordered_nultimap {
public:
/'l types
typedef Key key_type;
typedef std:: pair<Key const, Mapped> val ue_type;
t ypedef Mapped nmapped_type;
t ypedef Hash hasher;
typedef Pred key_equal ;
typedef Alloc allocator_type;
typedef typenane allocator_type:: pointer pointer;
typedef typenane allocator_type::const_pointer const_pointer;
typedef typenane allocator_type::reference reference;
typedef typenane allocator_type::const_reference const_reference;
typedef inpl enmentation-defined size_type;
typedef inplenmentation-defined difference_type;
typedef inplenmentation-defined iterator;
typedef inplenmentation-defined const_iterator;
typedef inplenmentation-defined |ocal _iterator;
t ypedef inplenmentation-defined const_|ocal _iterator;

/1 construct/copy/destruct
explicit unordered_nmulti map(size_type = inplenentation-defined,
hasher const& = hasher (),
key _equal const& = key_equal (),
al l ocator _type const& = allocator_type());
t enpl at e<t ypenane | nputlterator>
unordered_nul ti map(lnputlterator, Inputlterator,
size_type = inplenentation-defined,
hasher const& = hasher (),
key_equal const& = key_equal (),
al l ocator _type const& = allocator_type());
unordered_nul ti map(unordered_nul ti map const &) ;
unordered_nul ti mp(unordered_mnultimap &&);
explicit unordered_multi map(All ocator const&);
unordered_nul ti map(unordered_nul ti map const&, Allocator const&);
~unordered_nul timap();
unor dered_nul ti map& operat or =(unordered_mrul ti map const &) ;
unordered_nul ti map& operator=(unordered_nulti map &&);
al l ocator _type get_allocator() const;

/'l size and capacity

bool enpty() const;
size_type size() const;
size_type max_size() const;

/] iterators

iterator begin();

const __iterator begin() const;
iterator end();

const _iterator end() const;

48

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.Unordered

const _iterator cbhegin() const;
const _iterator cend() const;

/1 modifiers

tenpl ate<typenane... Args> iterator enplace(Argsé&&. ..);
tenpl ate<typenane... Args> iterator enplace_hint(const_iterator, Args&& ..)
iterator insert(value_type const&)

iterator insert(const_iterator, value_type constg&)

tenpl ate<typenane Inputlterator> void insert(lnputlterator, Inputlterator)
iterator erase(const_iterator);

size_type erase(key_type const&);

iterator erase(const_iterator, const_iterator)

voi d qui ck_erase(const_iterator)

voi d erase_return_voi d(const_iterator)

void clear();

voi d swap(unordered_mul ti map&)

/| observers
hasher hash_function() const;
key_equal key_eq() const;

/'l 1 ookup
iterator find(key_type const&)
const __iterator find(key_type const& const;
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash
typenane Conpati bl ePr edi cat e>
iterator find(Conpatibl eKey const& Conpati bl eHash const &
Conpati bl ePredi cate const &)
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash
typenane Conpati bl ePr edi cat e>
const _iterator
find(Conpati bl eKey const & Conpati bl eHash const &,
Conpati bl ePredi cate const&) const;
size_type count(key_type const&) const;
std::pair<iterator, iterator> equal _range(key_type const&)

std::pair<const_iterator, const_iterator> equal _range(key_type const&) const;

/'l bucket interface

size_type bucket _count() const;

size_type nmax_bucket _count () const;

si ze_type bucket _size(size_type) const;

si ze_type bucket (key_type const&) const;

| ocal _iterator begin(size_type);

const _local _iterator begin(size_type) const
| ocal _iterator end(size_type)

const _local _iterator end(size_type) const
const _local _iterator chegin(size_type) const;
const _local _iterator cend(size_type)

/'l hash policy

float | oad_factor() const;
float max_| oad_factor() const;
voi d nax_|l oad_factor(float)
voi d rehash(size_type)

};

/1 Equality Conparisons
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenane All oc>
bool operator==(unordered_nul ti map<Key, Mapped, Hash, Pred, Alloc> const&
unor dered_nul ti map<Key, Mapped, Hash, Pred, Alloc> const&)
tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenane All oc>

49

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

typenane Pred,

operat or! =(unordered_nul ti map<Key, Mapped, Hash, Pred, Al oc> constg&,
unor dered_nul ti map<Key, Mapped, Hash, Pred, Alloc> constg&)

t ypenanme Hash,

bool

typenane All oc>

/'l swap
t enpl at e<t ypenane Key, typenane Mapped,
unor dered_nul ti map<Key, Mapped, Hash, Pred, A loc>&);

voi d swap(unordered_nul ti map<Key, Mapped, Hash, Pred, Alloc>g&,
Based on chapter 23 of the working draft of the C++ standard [n2960]. But without the updated rules for allocators.

Description
Key must be Assignable and CopyConstructible.

Key
Mapped must be CopyConstructible

Mapped
Hash

A unary function object type that acts a hash function for a Key. It takes a single argument of type Key and returns a

Template Parameter s
A binary function object that implements an equivalence relation on values of type Key. A binary function object that
induces an equivalence relation on values of type Key. It takes two arguments of type Key and returns a value of type

Pred
bool.

An allocator whose value type is the same as the container's value type.
The number of buckets can be automatically increased by a call to insert, or as the result of calling rehash.

Alloc

value of type std::size t.
The elements are organized into buckets. Keys with the same hash code are stored in the same bucket and elements with equivalent
keys are stored next to each other.

unor der ed_mul ti map public types

typedef Key key_type;

1.
typedef std::pair<Key const, Mapped> value_type;

2.
typedef Mapped mapped_type;

typedef Hash hasher;
typedef Pred key_equal;

typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;

8.
typedef typename allocator_type::reference reference;

10. typedef typename aIIocator_type::const_reference const_reference;
50
httpo://www.renderx.com/

9

11 typedef implementation-defined size_type;
An unsigned integral type.
size_type can represent any non-negative value of difference_type.

render

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2960.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

12 typedef implementation-defined difference_type;
Is identical to the difference type of iterator and const_iterator.

A signed integral type.

13 typedef implementation-defined iterator;
A iterator whose value type is value_type.
The iterator category is at least a forward iterator.

Convertible to const_iterator.

14. typedef implementation-defined const _iterator;
A constant iterator whose value type is value_type.

The iterator category is at least a forward iterator.

An iterator with the same value type, difference type and pointer and reference type as iterator.

i mpl erent ati on-defi ned,
hasher (),
al | ocator_type());

A local_iterator object can be used to iterate through a single bucket.

16. typedef implementation-defined const_local_iterator;
A const_local_iterator object can be used to iterate through a single bucket.
unor der ed_mul ti map public construct/copy/destruct
hasher const & hf
key_equal
al | ocator_type const& a

explicit unordered_multi map(size_type n

const & eq = key_equal (),
Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-

15. typedef implementation-defined local_iterator;
A constant iterator with the same value type, difference type and pointer and reference type as const_iterator.

I,

I nputlterator

= hasher (),

const & hf

Postconditions: si ze()
t enpl at e<t ypenane | nputlterator>
unordered_nul ti map(l nputlterator f,
size_type n = inpl enentati on-defi ned,
hasher
const & eq = key_equal (),
Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-

locator and a maximum load factor of 1.0.

key_equal
al l ocator _type const& a = allocator_type());

locator and a maximum load factor of 1.0 and inserts the elements from [f, I) into it.

unor dered_nul ti map(unordered_nul ti map const &) ;
51

val ue_t ype is copy constructible

3.
The copy constructor. Copies the contained elements, hash function, predicate, maximum load factor and allocator.

Requires:
unordered_nul ti map(unordered_mnulti map &&);

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

The move constructor.
explicit unordered_multi map(All ocator consté& a);
Al | ocat or
Constructs an container, copying x's contained elements, hash function, predicate, maximum load factor, but using allocator a.

This is emulated on compilers without rvalue references.
val ue_t ype is move constructible. (TODO: This is not actually required in this implementation).
const& a);

Notes:
Requires:
Constructs an empty container, using allocator a.

unor der ed_mnul ti map(unordered_nul ti map const & X,

~unor dered_mul ti map();

The destructor is applied to every element, and all memory is deallocated
unor der ed_mnul ti map& oper at or =(unordered_nul ti map const &) ;

Notes:
On compilers without rvalue references, there is a single assignment operator with the signature oper at or =(un-

The assignment operator. Copies the contained elements, hash function, predicate and maximum load factor but not the allocator.

ordered_nul ti map) in order to emulate move semantics.

Notes:
val ue_t ype is copy constructible
unor dered_nul ti map& operat or=(unordered_mul ti map &&);

Requires:
On compilers without rvalue references, there is a single assignment operator with the signature oper at or =(un-

ordered_nul ti map) in order to emulate move semantics.

The move assignment operator.
val ue_t ype is move constructible. (TODO: This is not actually required in this implementation).
const ;

Notes:
Requires:
al l ocator_type get_allocator()
unor der ed_mul ti map size and capacity
bool enpty() const;
size() == 0
const ;
end())

Returns:
size_type size()
std:: di stance(begin(),

Returns:

size_type max_size() const;

si ze() of the largest possible container.
httpo://www.renderx.com/

Returns:

unor der ed_mul ti map iterators
const ;

52

iterator begin();
const __iterator begin()

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

An iterator referring to the first element of the container, or if the container is empty the past-the-end value for the

Returns:
container.
iterator end();
const _iterator end() const;
An iterator which refers to the past-the-end value for the container.
A constant iterator referring to the first element of the container, or if the container is empty the past-the-end value

Returns:
args) ;

const _iterator cbegin() const;
A constant iterator which refers to the past-the-end value for the container.

for the container.

Returns:
const _iterator cend() const;
Args> iterator enpl ace(Args&s&. .

Returns:
unor der ed_nul ti map modifiers

1

If an exception is thrown by an operation other than a call to hasher the function has no effect.
args);

Inserts an object, constructed with the arguments ar gs, in the container.
An iterator pointing to the inserted element.

t enpl at e<t ypenane. .
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10 argu-

Returns:
Throws:
factor.

Notes:
Pointers and references to elements are never invalidated.

ments, with no support for rvalue references or move semantics.
Args>
Ar gs&&. .

2.
iterator enplace_hint(const_iterator hint,

Inserts an object, constructed with the arguments ar gs, in the container.

t enpl at e<t ypenane. . .
If an exception is thrown by an operation other than a call to hasher the function has no effect.
The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way that
Boost.Unordered supports is to point to an existing element with the same key.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

hint is a suggestion to where the element should be inserted.
An iterator pointing to the inserted element.

Returns:
Throws:
Notes:

factor.
Pointers and references to elements are never invalidated.

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10 argu-

ments, with no support for rvalue references or move semantics.

httpo://www.renderx.com/

iterator insert(value_type const& obj);
53

3.
An iterator pointing to the inserted element.
If an exception is thrown by an operation other than a call to hasher the function has no effect.

Inserts obj in the container.

Returns:
Throws:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

val ue_type const & obj);

Pointers and references to elements are never invalidated.

If an exception is thrown by an operation other than a call to hasher the function has no effect.
Boost.Unordered supports is to point to an existing element with the same key.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

Notes:
factor.
4. iterator insert(const _iterator hint,
Inserts obj in the container.
hint is a suggestion to where the element should be inserted.
An iterator pointing to the inserted element.

The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way that

Returns:
Throws:
Notes:

factor.
Pointers and references to elements are never invalidated.
Inputlterator last);

t enpl at e<t ypenane | nputlterator>
void insert(lnputlterator first,
When inserting a single element, if an exception is thrown by an operation other than a call to hasher the function

Inserts a range of elements into the container.

has no effect.
Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
Pointers and references to elements are never invalidated.

Throws:
position);

Notes:
factor.
iterator erase(const_iterator
The iterator following posi t i on before the erasure.
Only throws an exception if it is thrown by hasher or key_equal .
When the number of elements is a lot smaller than the number of buckets this function can be very inefficient as
it has to search through empty buckets for the next element, in order to return the iterator. The method quick_erase

Erase the element pointed to by posi ti on.
In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might

Returns:

Throws:
not be true in other implementations.

is faster, but has yet to be standardized.
| ast);

Notes:
size_type erase(key_type const& k);
Only throws an exception if it is thrown by hasher or key_equal
const _iterator

Erase all elements with key equivalent to k.
The number of elements erased.

Returns:
iterator erase(const_iterator first,
httpo://www.renderx.com/

Throws:
Erases the elements in the range from first tol ast.
The iterator following the erased elements - i.e. | ast .
Only throws an exception if it is thrown by hasher or key_equal
54

Returns:
Throws:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
position);

not be true in other implementations.
This method is faster than erase as it doesn't have to find the next element in the container - a potentially costly op-

9

voi d qui ck_erase(const_iterator
Erase the element pointed to by posi ti on.
Only throws an exception if it is thrown by hasher or key_equal .
In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.
As it hasn't been standardized, it's likely that this may change in the future.

Throws:
position);

Notes:
eration.

voi d erase_return_voi d(const_iterator
Only throws an exception if it is thrown by hasher or key_equal .

Erase the element pointed to by posi ti on.
not be true in other implementations.

Throws:
In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
This method is now deprecated, use quick_return instead. Although be warned that as that isn't standardized yet, it

could also change.

Notes:
void clear();
Erases all elements in the container.
Postconditions: si ze()

Never throws an exception.
voi d swap(unordered_mul ti map&) ;

Throws:
If the allocators are equal, doesn't throw an exception unless it is thrown by the copy constructor or copy assignment

operator of key_equal or hasher.
For a discussion of the behavior when allocators aren't equal see the implementation details.

Throws:
const ;

Notes:
unor dered_nul ti map observers
hasher hash_function()
Returns: The container's hash function.
key_equal key_eq() const;

The container's key equality predicate.

Returns:
httpo://www.renderx.com/

55

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

unor dered_mnul ti map lookup

L iterator find(key_type const& k);
const _iterator find(key_type const& k) const;
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenanme Conpati bl ePredi cat e>
iterator find(ConpatibleKey const& k, Conpatibl eHash const & hash,
Conpati bl ePredi cate const& eq);
t enpl at e<t ypenane Conpati bl eKey, typenane Conpati bl eHash,
typenanme Conpati bl ePredi cat e>
const _iterator
find(Conpati bl eKey const& k, Conpatibl eHash const & hash,
Conpat i bl ePredi cate const& eq) const;

Returns: An iterator pointing to an element with key equivalent to k, or b. end() if no such element exists.

Notes: The templated overloads are a non-standard extensions which allows you to use a compatible hash function and
equality predicate for a key of a different type in order to avoid an expensive type cast. In general, its use is not
encouraged.

size_type count(key_type consté& k) const;
Returns: The number of elements with key equivalent to k.
3.

std::pair<iterator, iterator> equal _range(key_type consté& Kk);
std:: pair<const_iterator, const_iterator> equal _range(key_type const& k) const;

Returns: A range containing all elements with key equivalent to k. If the container doesn't container any such elements, returns
std:: nmake_pair(b.end(),b.end()).

unor dered_nul ti map bucket interface

size_type bucket _count() const;

Returns: The number of buckets.
2. . _
si ze_type nmax_bucket _count () const;
Returns: An upper bound on the number of buckets.
3. . . .
si ze_type bucket _size(size_type n) const;
Requires: n < bucket _count ()
Returns: The number of elements in bucket n.
4, .
size_type bucket (key_type const& k) const;
Returns: The index of the bucket which would contain an element with key k.
Postconditions: The return value is less than bucket _count ()
5.

| ocal _iterator begin(size_type n);
const | ocal _iterator begin(size_type n) const;

Requires: n shall be intherange [0, bucket count()).
Returns: A local iterator pointing the first element in the bucket with index n.
56

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

| ocal _iterator end(size_type n);
const _local _iterator end(size_type n) const;

Requires: n shall be intherange [0, bucket _count()).
Returns: A local iterator pointing the 'one past the end' element in the bucket with index n.
7.
const _local _iterator chegin(size_type n) const;
Requires: n shall be in the range [0, bucket _count()).
Returns: A constant local iterator pointing the first element in the bucket with index n.
8. . . _
const _| ocal _iterator cend(size_type n);
Requires: n shall be in the range [0, bucket _count()).
Returns: A constant local iterator pointing the 'one past the end' element in the bucket with index n.

unor der ed_mul ti map hash policy

float | oad_factor() const;

Returns: The average number of elements per bucket.
float max_| oad_factor() const;

Returns: Returns the current maximum load factor.
voi d max_|l oad_factor(float z);

Effects: Changes the container's maximum load factor, using z as a hint.
voi d rehash(size_type n);

Changes the number of buckets so that there at least n buckets, and so that the load factor is less than the maximum load factor.

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-
ison function.

unor der ed_mul ti map Equality Comparisons

tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenane All oc>
bool operator==(unordered_mnul ti map<Key, Mapped, Hash, Pred, Alloc> const& x,
unor dered_nul ti map<Key, Mapped, Hash, Pred, Alloc> const& y);

Notes: This is a boost extension.

Behavior is undefined if the two containers don't have equivalent equality predicates.

tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenane All oc>
bool operator!=(unordered_mnul ti map<Key, Mapped, Hash, Pred, Alloc> const& x,
unor dered_nul ti map<Key, Mapped, Hash, Pred, Alloc> const& vy);

57

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Unordered

Notes: This is a boost extension.

Behavior is undefined if the two containers don't have equivalent equality predicates.

unor dered_nul ti map swap

tenpl at e<t ypenane Key, typenane Mapped, typenane Hash, typenane Pred,
typenane All oc>
voi d swap(unordered_mul ti map<Key, Mapped, Hash, Pred, Alloc>& x,
unor dered_nul ti map<Key, Mapped, Hash, Pred, Alloc>& y);

Effects: x. swap(y)

Throws: If the allocators are equal, doesn't throw an exception unless it is thrown by the copy constructor or copy assignment
operator of Hash or Pr ed.

Notes: For a discussion of the behavior when allocators aren't equal see the implementation details.

Bibliography
Bibliography

C/C++ Users Journal. February, 2006. Pete Becker. “STL and TR1: Part 11 - Unordered containers”.

An introducation to the standard unordered containers.

58

render

httpo://www.renderx.com/

http://www.ddj.com/cpp/184402066
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Unordered
	Table of Contents
	Introduction
	The Data Structure
	Equality Predicates and Hash Functions
	Comparison with Associative Containers
	Implementation Rationale
	Change Log
	Reference
	Header <boost/unordered_set.hpp>
	Class template unordered_set
	Synopsis
	Description
	unordered_set public types
	unordered_set public construct/copy/destruct
	unordered_set size and capacity
	unordered_set iterators
	unordered_set modifiers
	unordered_set observers
	unordered_set lookup
	unordered_set bucket interface
	unordered_set hash policy
	unordered_set Equality Comparisons
	unordered_set swap

	Class template unordered_multiset
	Synopsis
	Description
	unordered_multiset public types
	unordered_multiset public construct/copy/destruct
	unordered_multiset size and capacity
	unordered_multiset iterators
	unordered_multiset modifiers
	unordered_multiset observers
	unordered_multiset lookup
	unordered_multiset bucket interface
	unordered_multiset hash policy
	unordered_multiset Equality Comparisons
	unordered_multiset swap

	Header <boost/unordered_map.hpp>
	Class template unordered_map
	Synopsis
	Description
	unordered_map public types
	unordered_map public construct/copy/destruct
	unordered_map size and capacity
	unordered_map iterators
	unordered_map modifiers
	unordered_map observers
	unordered_map lookup
	unordered_map bucket interface
	unordered_map hash policy
	unordered_map Equality Comparisons
	unordered_map swap

	Class template unordered_multimap
	Synopsis
	Description
	unordered_multimap public types
	unordered_multimap public construct/copy/destruct
	unordered_multimap size and capacity
	unordered_multimap iterators
	unordered_multimap modifiers
	unordered_multimap observers
	unordered_multimap lookup
	unordered_multimap bucket interface
	unordered_multimap hash policy
	unordered_multimap Equality Comparisons
	unordered_multimap swap

	Bibliography
	Bibliography

