std: :pair<int, double>(5, 3.14159);

Boost.Typeof
Arkadiy Vertleyb
Peder Holt
Copyright © 2004, 2005 Arkadiy Vertleyb, Peder Holt
Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at ht-
tp://www.boost.org/LICENSE_1 0.txt)
Table of Contents
o111V o] o PP 1
IV (o] 4 T | PP 3
T T =10 Tol PP 5
Y U @ TR O @ T I O SPT 5
(0L 1Yo I N N PSP 6
INCREMENT_REGISTRATION _GROUPoitiiiiii ittt e r e e e e e e e e aaans 6
LN I = 7 SO PPP 6
YT U1 N @ N T L I 22 P 7
| A] PSP 7
Y S 74 PP 7
ST I I = = S I 2 S TSRS 8
REGISTER _TEMPLATE ...oo ittt ettt et e e et e e et e e e et e e et e e et b e e e et b e e e e saen s 8
LI =317 N TP 9
B I 4 =0 | S I o @ e I P PSPPI 10
TYPEOF_NESTED_TYPEDEF, TYPEOF NESTED_TYPEDEF TPL ...uuiiiiiiiiiiiiiiie et 11
Other CONSIAErAtIONS BNG TIPS ... ceeett et ettt et e et e e ettt ettt ettt b e e e et e et e e e et et e e ettt e e e eebt e e eenbtnaaeees 12
Native typeof SUPPOrt and EMUIBLIONiiiii ettt e et et e e 12
The three PartiCipating PAITIES ciiiii e ettt ettt e e et e et e e ennens 13
SUPPOITEO TEAIUIES ...ttt ettt ettt et et e et e et e et e e et e e e et et e e ettt e e et et e e e e 13
What NEEUS 0 D8 FEGISTEIBA? ... ettt et ettt ettt ettt et e e 14
(T4 4001 PR 15
CONTIDULEA BY: ...ttt ettt ettt ettt ettt oo et e bt e et ettt e ettt a e et e e aae s 15
ACKNOWIEAGEMENTS ... e e ettt ettt e et e et ettt et et 15
Motivation
Today many template libraries supply object generators to simplify object creation by utilizing the C++ template argument deduction
facility. Consider std: -pair. In order to instantiate this class template and create a temporary object of this instantiation, one has
to supply template parameters, as well as parameters to the constructor:
To avoid this duplication, STL supplies the std: :make_pair object generator. When it is used, the types of template parameters

are deduced from supplied function arguments:
httpo://www.renderx.com/

std: :make_pair(5, 3.14159);
For the temporary objects it is enough. However, when a named object needs to be allocated, the problem appears again:

render

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

std: :pair<int, double> p(5, 3.14159);

The object generator no longer helps:
std: :pair<int, double> p = std::make_pair(5, 3.14159);

It would be nice to deduce the type of the object (on the left) from the expression it is initialized with (on the right), but the current
C++ syntax does not allow for this.

The above example demonstrates the essence of the problem but does not demonstrate its scale. Many libraries, especially expression
template libraries, create objects of really complex types, and go a long way to hide this complexity behind object generators. Consider
a nit Boost.Lambda functor:

1> 158&& 2 < 20
If one wanted to allocate a named copy of such an innocently looking functor, she would have to specify something like this:

lambda_functor<
lambda_functor_base<
logical_action<and_action>,
tuple<
lambda_functor<
lambda_functor_base<
relational_action<greater_action>,
tuple<
lambda_functor<placeholder<l> >,
int const

>
>1
lambda_functor<
lambda_functor_base<
relational_action<less_action>,

tuple<
lambda_functor<placeholder<2> >,
int const

>

>
>

>
f=_1>15 && _2 < 20;

Not exactly elegant. To solve this problem (as well as some other problems), the C++ standard committee is considering a few additions
to the standard language, such as typeof/decltype and auto (see http://www.open-std.org/jtcl/sc22/wg21/docs/pa-
pers/2004/n1607.pdf).

The typeof operator (or decltype, which is a slightly different flavor of typeof) allows one to determine the type of an expression
at compile time. Using typeof, the above example can be simplified drastically:

typeof(_1 > 15 && _2 < 20) f=_1 > 15 && _2 < 20;

Much better, but some duplication still exists. The auto type solves the rest of the problem:

render

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1607.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1607.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost. Typeof

auto f = _1 > 15 && _2 < 20;

The purpose of the Boost. Typeof library is to provide a library-based solution, which could be used until the language-based facility
is added to the Standard and becomes widely available.

To start using typeof include the typeof header:
#include <boost/typeof/typeof._hpp>
To deduce the type of an expression at compile time use the BOOST_TYPEOF macro:

namespace ex1

{
typedef BOOST_TYPEOF(1 + 0.5) type;

BOOST_STATIC_ASSERT((is_same<type, double>::value));

In the dependent context use BOOST_TYPEOF_TPL instead of BOOST_TYPEOF:

namespace ex2

{
template<class T, class U>
BOOST_TYPEOF_TPL(T() + U()) add(const T& t, const U& u)
{
return t + u;
};
typedef BOOST_TYPEOF(add("a", 1.5)) type;
BOOST_STATIC_ASSERT((is_same<type, double>::value));
+

The above examples are possible because the Typeof Library knows about primitive types, such as int, double, char, etc. The
Typeof Library also knows about most types and templates defined by the Standard C++ Library, but the appropriate headers need
to be included to take advantage of this:

#include <boost/typeof/std/utility.hpp>

namespace ex3

{
BOOST_AUTO(p, make_pair(l, 2));

BOOST_STATIC_ASSERT((is_same<BOOST_TYPEOF(p), pair<int, int> >::value));

Here <boost/typeof/std/utility.hpp> includes <utility> and contains knowledge about templates defined there. This
naming convention applies in general, for example to let the Typeof Library handle std::vector, include
<boost/typeof/std/vector.hpp>, etc

To deduce the type of a variable from the expression, this variable is initialized with, use the BOOST_AUTO macro (or BOOST_AUTO_TPL
in a dependent context:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

#include <boost/typeof/std/string.hpp>
namespace ex4
{

BOOST_AUTO(p, new int[20]);

BOOST_STATIC_ASSERT((is_same<BOOST_TYPEOF(p), int*>::value));

Both BOOST_TYPEOF and BOOST_AUTO strip top-level qualifiers. Therefore, to allocate for example a reference, it has to be specified
explicitly:

namespace ex5

{
string& hello()
{
static string s = "hello";
return s;
+
BOOST_AUTO(&s, hello()):;
+

To better understand this syntax, note that this gets expanded into:
BOOST_TYPEOF(hello()) &s = hello();

If your define your own type, the Typeof Library cannot handle it unless you let it know about this type. You tell the Typeof Library
about a type (or template) by the means of "registering” this type/template.

Any source or header file where types/templates are registered has to contain the following line before any registration is done:

#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()

After this a type can be registered:

namespace ex6

{
struct MyType

{3:
}

BOOST_TYPEOF_REGISTER_TYPE(ex6: :MyType)

The registration must be done from the context of global namespace; fully qualified type name has to be used.
Any number of types can be registered in one file, each on a separate line.

Once your type is registered, the Typeof Library can handle it in any context:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

namespace ex6
{
typedef BOOST_TYPEOF(make_pair(1l, MyType())) type:;

BOOST_STATIC_ASSERT((is_same<type, pair<int, MyType> >::value));

A template is registered by specifying its fully qualified name, and describing its parameters. In the simplest case, when all parameters
are type parameters, only their number needs to be specified:

namespace ex7

{
template<class T, class U>
struct MyTemplate
{};

+

BOOST_TYPEOF_REGISTER_TEMPLATE(ex7: :MyTemplate, 2)

namespace ex7

{
typedef BOOST_TYPEOF(make pair(l, MyTemplate<int, ex6::MyType>())) type:
BOOST_STATIC_ASSERT((is_same<type,
pair<int, MyTemplate<int, ex6::MyType> >
>::value));
}

When a template has integral template parameters, all parameters need to be described in the preprocessor sequence:

namespace ex8

{
template<class T, iInt n>
struct MyTemplate
{:

¥

BOOST_TYPEOF_REGISTER_TEMPLATE(ex8: :MyTemplate, (class)(int))

namespace ex8

{
typedef BOOST_TYPEOF(make_pair(1l, MyTemplate<ex7::MyTemplate<ex6: :MyType, int>, 0>())) type;
BOOST_STATIC_ASSERT((is_same<type,
pair<int, MyTemplate<ex7::MyTemplate<ex6::MyType, int>, 0> >
>::value));
¥

Please see the reference for more details.

Reference
AUTO, AUTO_TPL

The BOOST_AUTO macro emulates the proposed auto keyword in C++,

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

Usage
BOOST_AUTO(var,expr)
BOOST_AUTO_TPL(var,expr)

a variable to be initialized with the expression
If you want to use auto in a template-context, use BOOST_AUTO_TPL (expr), which takes care of the typename keyword inside

Arguments

var

expr
Remarks
the auto expression.
Sample Code

a valid c++ expression

{

force: :newton b(6);

BOOST_AUTO(c, a * b);
The BOOST_TYPEOF_COMPL IANT macro can be used to force the emulation mode. Define it if your compiler by default uses another

int main()
length: :meter a(5);
mode, such as native typeof or Microsoft-specific trick, but you want to use the emulation mode, for example for portability reasons.

COMPLIANT
INCREMENT REGISTRATION_GROUP
The BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP macro ensures that type registrations in different header files receive

unique identifiers.

Usage
#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()

Remarks
#include BOOST TYPEOF_INCREMENT REGISTRATION_GROUP()

specified once in every cpp/hpp file where any registration is performed, before any registration.
The BOOST_TYPEOF_INTEGRAL macro is used when registering an integral template parameter using BOOST_TYPEOF_REGISTER_TEM-

Sample Code

httpo://www.renderx.com/

class X;
BOOST_TYPEOF_REGISTER_TYPE(X)

INTEGRAL

PLATE.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

Useful for enums and dependent integral template parameters.

Usage
BOOST_TYPEOF_INTEGRAL (x)

Arguments
x afully qualified integral type or enum
A short syntax has been implemented for the built in types (int, bool, long, unsigned long, etc.) Other non-type template parameters

Remarks
(e.g. pointer to member) are not supported.
#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()

Sample Code

namespace foo
{
template<color CO,typename T1>

enum color {red, green, blue};
class class_with_enum {}:

template<typename TO,TO 11>

class class_with_dependent_non_type {}:
BOOST_TYPEOF_REGISTER_TEMPLATE(foo: :class_with_enum,

}

(BOOST_TYPEOF_INTEGRAL (foo: :color))
BOOST_TYPEOF_REGISTER_TEMPLATE(foo: :class_with_dependent_non_type,

(typename)

)
(typename)
(BOOST_TYPEOF_INTEGRAL(PO))

The BOOST_TYPEOF_LIMIT_FUNCTION_ARITY macro defines how many parameters are supported for functios, and applies to

)

LIMIT_FUNCTION_ARITY

functions, function pointers, function references, and member function pointers. The default value is 10. Redefine if you want the

Typeof Library to handle functions with more parameters.
Define BOOST_TYPEOF_MESSAGE before including boost/typeof/typeof.hpp to include messages "using typeof emulation™ and "using

LIMIT_SIZE

is 50. Increase it if you want the Typeof Library to handle very complex types, although this possibility is limited by the maximum
this number may help to boost compile-time performance.

native typeof". By default, these messages will not be displayed.
The BOOST_TYPEOF_LIMIT_SIZE macro defines the size of the compile-time sequence used to encode a type. The default value
number of template parameters supported by your compiler. On the other hand, if you work only with very simple types, decreasing

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

REGISTER_TYPE

The BOOST_TYPEOF_REGISTER_TYPE macro informs the Typeof Library about the existence of a type

Usage
BOOST_TYPEOF_REGISTER_TYPE(X)

Arguments

x afully qualified type

Remarks

Must be used in the global hamespace
#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()

Sample Code

class bar {}:

{

namespace foo
enum color {red, green, blue};

}

REGISTER_TEMPLATE

BOOST_TYPEOF_REGISTER_TYPE(foo: :bar)
BOOST_TYPEOF_REGISTER_TYPE(foo: :color)
The BOOST_TYPEOF_REGISTER_TEMPLATE macro informs the Typeof Library about the existence of a template and describes its

paramete IS

Usage
BOOST_TYPEOF_REGISTER_TEMPLATE(x, n)
BOOST_TYPEOF_REGISTER_TEMPLATE(x, seq)

Arguments
a fully qualified template

X
the number of template arguments. Only valid if all template arguments are typenames

n
a sequence of template arguments. Must be used when integral or template template parameters are present

seq
Must be used in the global hamespace.

Remarks
The library allows registration of templates with type, integral, and template template parameters:
» A template parameter of a well-known integral type can be described by simply supplying its type, like (unsigned int). The
httpo://www.renderx.com/

» A type template parameter is described by the (class) or (typename) sequence element

following well-known integral types are supported:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

[signed/unsigned] char

[unsigned] short
Enums and typedefs of integral types, need to be described explicitly with the BOOST_TYPEOF INTEGRAL macro, like

[unsigned] int

[unsigned] long
Template template parameters are described with the BOOST_TYPEOF_TEMPLATE macro, like: (BOOST_TYPEOF_TEM-
In case of all type parameters this can be shortened to something like

unsigned

bool

size_t
(BOOST_TYPEOF_INTEGRAL (MyEnum))
int))).
(BOOST_TYPEOF_TEMPLATE(2)). The nested template template parameters are not supported.

PLATE((class) (unsigned
#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()

Sample Code

namespace foo

template<typename TO, typename T1>
class simple_template {}:
int 11>
BOOST_TYPEOF_REGISTER_TEMPLATE(foo: :class_with_integral_constant, (typename)(int))

{

template<typename TO,
class class_with_integral_constant {};
BOOST_TYPEOF_REGISTER_TEMPLATE(foo: :simple_template, 2)

The BOOST_TYPEOF_TEMPLATE macro is used when registering template template parameters using BOOST_TYPEOF_REGISTER_TEM-

}

TEMPLATE

Usage
BOOST_TYPEOF_TEMPLATE(n)
a sequence of template arguments. Must be used when there are integral constants in the nested template

BOOST_TYPEOF_TEMPLATE(seq)

Arguments

PLATE.
the number of template arguments. Only valid if all template arguments are typenames
Can not be used to register nested template template parameters.

n
httpo://www.renderx.com/

seq
Remarks

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

Sample Code

#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()

namespace foo

{
enum color {red, green, blue};
template<color CO, template<typename> class T1>
class nested_template_class {};
template<template<typename, unsigned char> class T1>
class nested_with_integral {}:

+

BOOST_TYPEOF_REGISTER_TEMPLATE(foo: :nested_template_class,
(foo::color)
(BOOST_TYPEOF_TEMPLATE(1))

)

BOOST_TYPEOF_REGISTER_TEMPLATE(foo: :nested_with_integral,
(BOOST_TYPEOF_TEMPLATE((typename) (unsigned char)))

)

TYPEOF TYPEOF_TPL

The BOOST_TYPEOF macro calculates the type of an expression, but removes the top-level qualifiers, const&

Usage

BOOST_TYPEOF (expr)
BOOST_TYPEOF_TPL(expr)

Arguments
expr avalid c++ expression that can be bound to const T&
Remarks

If you want to use typeof in a template-context, use BOOST_TYPEOF_TPL(expr), which takes care of typename inside the typeof
expression.

10

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

Sample Code
template<typename A, typename B>
struct result_of conditional
typedef BOOST_TYPEOF_TPL(true?A():B()) type:;

}

{
template<typename A, typename B>
: b;
The TYPEOF_NESTED_TYPEDEF macro works in much the same way as the "TYPEOF' macro does, but workarounds several compiler

{
return a < b ? a

}

result_of_conditional<A, B>::type min(const A& a,const B& b)
TYPEOF _NESTED TYPEDEFR TYPEOF NESTED TYPEDEF TPL

deficiencies.

Usage
BOOST_TYPEOF_NESTED_TYPEDEF (name, expr)
BOOST_TYPEOF_NESTED TYPEDEF_TPL (name,expr)

Arguments
a valid identifier to nest the typeof operation inside
'typeof_nested_typedef' nests the 'typeof' operation inside a struct. By doing this, the 'typeof' operation can be split into two steps,

name
expr

a valid c++ expression that can be bound to const T&
Remarks
deconfusing several compilers (notably VC7.1 and VCB8.0) on the way. This also removes the limitation imposed by

BOOST_TYPEOF_LIMIT_SIZE and allows you to use 'typeof' on much larger expressions.
If you want to use typeof _nested_typedef in a template-context, use BOOST_TYPEOF_NESTED_TYPEDEF_TPL(name,expr),

which takes care of typename inside the typeof expression.
‘typeof_nested_typedef' can not be used at function/block scope.

httpo://www.renderx.com/

11

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

struct result_of conditional

Sample Code
template<typename A, typename B>
BOOST_TYPEOF_NESTED_TYPEDEF_TPL(nested, true?A():B())
typedef typename nested::type type;

{

}.
template<typename A, typename B>
result_of_conditional<A, B>::type min(const A& a,const B& b)
b;

{

}

return a < b ? a
Other considerations and tips
Native typeof support and emulation
Igor Chesnokov discovered a method that allows to implement typeof on the VC series of compilers. It uses a bug in the Microsoft

Many compilers support typeof already, most noticeable GCC and Metrowerks.
compiler that allows a nested class of base to be defined in a class derived from base:
template<int ID> struct typeof_access
struct id2type; //not defined
int ID> struct typeof_register : typeof_access

{

}s
template<class T,
// define base"s nested class here
struct typeof_access::id2type

{

};
//Type registration function
Peder Holt adapted this method to VC7.0, where the nested class is a template class that is specialized in the derived class.
In VVC8.0, it seemed that all the bug-featire had been fixed, but Steven Watanabe managed to implement a more rigorous version of

}

typedef T type;
typeof_register<T, compile-time-constant> register_type(const T&);
//Actually register type by instantiating typeof _register for the correct type

sizeof(register_type(some-type));
//Use the base class to access the type.
typedef typeof _access::id2type::type type;
For many other compilers neither native typeof support nor the trick described above is an option. For such compilers the emulation

httpo://www.renderx.com/

12

the VC7.0 fix that enables 'typeof' to be supported 'natively' here as well.
method is the only way of implementing typeof.
According to a rough estimate, at the time of this writing the introduction of the typeof, auto, etc., into the C++ standard may not
happen soon. Even after it's done, some time still has to pass before most compilers implement this feature. But even after that, there

always are legacy compilers to support (for example now, in 2005, many people are still using VCB6, long after VC7.x, and even

VC8.0 heta became available).

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

Considering extreme usefulness of the feature right now, it seems to make sense to implement it at the library level.

The emulation mode seems to be important even if a better option is present on some particular compiler. If a library author wants

to develop portable code using typeof, she needs to use emulation mode and register her types and templates. Those users who
have a better option can still take advantage of it, since the registration macros are defined as no-op on such compilers, while the

users for whom emulation is the only option will use it.

The other consideration applies to the users of VC7.1. Even though the more convenient typeof trick is available, the possibility
of upgrade to VVC8, where emulation remains the only option, should be considered.

The emulation mode can be forced on the compilers that don't use it by default by defining the BOOST_TYPEOF_COMPLIANT symbol:

g++ -D BOOST_TYPEOF_COMPLIANT -1 \boost\boost_1 32_0 main.cpp

c:tuples
lambda: :

#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()
lambda: :
-logical_action, 1);

other_action, 1);

The three participating parties
tuple, 2);
lambda_functor, 1);
I lambda_functor_base, 2);
lambda

The Lambda example from the Motivation section requires the following registration:
relational_action, 1);

BOOST_TYPEOF_REGISTER_TEMPLATE (boost
BOOST_TYPEOF_REGISTER_TEMPLATE (boost
BOOST_TYPEOF_REGISTER_TEMPLATE (boost
BOOST_TYPEOF_REGISTER_TEMPLATE(boost: :
BOOST_TYPEOF_REGISTER_TEMPLATE (boost: : lambda:
BOOST_TYPEOF_REGISTER_TEMPLATE (boost: : lambda: :
BOOST_TYPEOF_REGISTER_TYPE(boost: : lambda: :greater_action);
BOOST_TYPEOF_REGISTER_TYPE(boost: : lambda: : less_action);
BOOST_TYPEOF_REGISTER_TYPE(boost: : lambda: :and_action);
BOOST_TYPEOF_REGISTER_TEMPLATE(boost: : lambda: :placeholder, (int));
It may seem that the price for the ability to discover the expression's type is too high: rather large amount of registration is required.
However note that all of the above registration is done only once, and after that, any combination of the registered types and templates
would be handled. Moreover, this registration is typically done not by the end-user, but rather by a layer on top of some library (in
When thinking about this, it's helpful to consider three parties: the typeof facility, the library (probably built on expression templates

principle), and the end-user. The typeof facility is responsible for registering fundamental types. The library can register its own

types and templates.
In the best-case scenario, if the expressions always consist of only fundamental types and library-defined types and templates, a
library author can achieve the impression that the typeof is natively supported for her library. On the other hand, the more often

this example -- Boost.Lambda).
expressions contain user-defined types, the more responsibility is put on the end-user, and therefore the less attractive this approach
Thus, the ratio of user-defined types in the expressions should be the main factor to consider when deciding whether or not to apply

becomes.

the typeof facility.
Supported features

or end-user, any combination of the following is supported:

13

The Typeof library pre-registers fundamental types. For these types, and for any other types/templates registered by the user library

» Pointers;

» References (except top-level);
» Consts (except top-level);

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

\olatiles (except top-level);

Arrays;
Pointers to member functions;

Pointers to data members.
int& (*)(const volatile char*, double[5], void(*)(short))

Functions, function pointers, and references;

For example the following type:
MyClass[10]) const

void (MyClass::*)(int MyClass::*

is supported right away, and something like:
is supported provided MyClass is registered.
The Typeof Library also provides registration files for most STL classes/templates. These files are located in the std subdirectory,

and named after corresponding STL headers. These files are not included by the typeof system and have to be explicitly included

by the user, as needed:
BOOST_AUTO(fun, std::bind2nd(std::less<int>(), 21)); //create named function object for future use.

What needs to be registered?

#include <boost/typeof/std/functional.hpp>
It is possible to take advantage of the compiler when registering types for the Typeof Library. Even though there is currently no
direct support for typeof in the language, the compiler is aware of what the type of an expression is, and gives an error if it encounters
an expression that has not been handled correctly. In the typeof context, this error message will contain clues to what types needs
to be registered with the Typeof Library in order for BOOST_TYPEOF to work.

:zencode_type_impl<V,Type_Not_Re[]

struct X {}:
template<typename A,bool B>

struct Y {};
std: :pair<X,Y<int,true> > a;
BOOST_AUTO(a,b);
We get the following error message from VC7.1
error C2504: "boost::type_of::"anonymous-namespace”
: base
V=boost: :type_of::"anonymous-namespace” : :encode_type_impl<boost: :mpl::vecl[]

class undefined
torO<boost: :mpl::na>,std: :pair<X,Y<int,true>>>::V0,

with
L

Inspecting this error message, we see that the compiler complains about X
14

gistered_With_Typeof System>"
Type_Not_Registered_With_Typeof_System=X
httpo://www.renderx.com/

1

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

base

BOOST_TYPEOF_REGISTER_TYPE(X); //register X with the typeof system
Recompiling, we get a new error message from VC7.1

"boost: :type_of::"anonymous-namespace” : :encode_type_implI<V,Type_Not_Rel[1

error C2504:
class undefined
torO<boost: :mpl::na>,std: :pair<X,Y<int,true>>>::V1,

with
V=boost: :type of::"anonymous-namespace- : :encode_type_ impl<boost::mpl::vecl[]

L
Type_Not_Registered_With_Typeof System=Y<int,true>

gistered_With_Typeof_ System>*
Inspecting this error message, we see that the compiler complains about Y<int, true>. Since Y is a template, and contains integral

1

constants, we need to take more care when registering:
BOOST_TYPEOF_REGISTER_TEMPLATE(Y, (typename) (bool)); //register template class Y

It is a good idea to look up the exact definition of Y when it contains integral constants. For simple template classes containing only

typenames, you can rely solely on the compiler error.

The above code now compiles.
This technique can be used to get an overview of which types needs to be registered for a given project in order to support typeof.

Limitations
Nested template template parameters are not supported, like:
template<template<template<class> class> class Tpl>

class A; // can"t register!
Classes and templates nested inside other templates also can't be registered because of the issue of nondeduced context. This limitation

is most noticeable with regards to standard iterators in Dinkumware STL, which are implemented as nested classes. Instead, instan-

tiations can be registered:
BOOST_TYPEOF_REGISTER_TYPE(std: : list<int>::const_iterator)

Contributed By:

e Compliant compilers -- Arkadiy Vertleyb, Peder Holt
* MSVC6.5, 7.0, 7.1 -- Igor Chesnokov, Peder Holt

The idea of representing a type as multiple compile-time integers, and passing these integers across function boundaries using sizeof(),
was taken from Steve Dewhurst's article "A Bitwise typeof Operator”, CUJ 2002. This article can also be viewed online, at ht-

Acknowledgements

15
httpo://www.renderx.com/

tp://www.semantics.org/localarchive.html.
Special thank you to Paul Mensonides, Vesa Karvonen, and Aleksey Gurtovoy for the Boost Preprocessor Library and MPL. Without

these two libraries, this typeof implementation would not exist.

render

http://www.semantics.org/localarchive.html
http://www.semantics.org/localarchive.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost. Typeof

The following people provided support, gave valuable comments, or in any other way contributed to the library development (in al-
phabetical order):

 David Abrahams

* Andrey Beliakov

+ Joel de Guzman
 Daniel James

* \esa Karvonen

e Andy Little

* Paul Mensonides

* Alexander Nasonov
 Tobias Schwinger

* Martin Wille

16

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Typeof
	Table of Contents
	Motivation
	Tutorial
	Reference
	AUTO, AUTO_TPL
	COMPLIANT
	INCREMENT_REGISTRATION_GROUP
	INTEGRAL
	LIMIT_FUNCTION_ARITY
	MESSAGES
	LIMIT_SIZE
	REGISTER_TYPE
	REGISTER_TEMPLATE
	TEMPLATE
	TYPEOF, TYPEOF_TPL
	TYPEOF_NESTED_TYPEDEF, TYPEOF_NESTED_TYPEDEF_TPL

	Other considerations and tips
	Native typeof support and emulation
	The three participating parties
	Supported features
	What needs to be registered?
	Limitations

	Contributed By:
	Acknowledgements

