rende

Boost.Intrusive
Olaf Krzikalla

lon Gaztanaga
Copyright © 2005 Olaf Krzikalla, 2006-2010 lon Gaztanaga

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1 O.txt or copy at ht-
tp://www.boost.org/LICENSE_1_0.txt)

Table of Contents

[oo [0 Tod 1] o PRSPPI 3
Presenting BOOSE.INIIUSIVEciiiii ittt e ettt ettt ettt ettt e e e eaee s 3
BUITAING BOOSEANIIUSIVE ...ttt e et et e et ettt e ettt ettt e e et et e e e ettt e e e eeae e aeees 4

INtrusive and NON-INEIUSIVE CONTAINEESiiue ittt et e e e e et et e ettt e e et e e et r e ettt e et e et et e e et e e et e e et e e eanaeeenas 4
Differences between intrusive and NON-INtrUSIVE CONTAINETSieuniii et e e e eeaes 4
Properties 0of BOOSE. INTIUSIVE CONAINEIScciiiii ettt ettt et e e et e ettt e et a e e e et e e e ebt e eeens 5

HOW 10 USE BOOSEINIIUSIVE ... ettt ettt et e et e ettt et e ettt e et e ettt e e e e e e e et e e et e e et e e ean e eaanaeenes 7
USING DASE NOOKS ... e e e et ettt et et 7
USING MEMDET NOOKS ...t e ettt et ettt e et e ettt e ettt e e e e 8
USING DO NOOKS ... e ettt ettt et e e 9
(0] o] [=Tot 11 =] (] 1 o[- TP PTISPPPTRRP 11

RTAT LT R (O T = PP 11

0o Tot=T o1 T 1140 PPN 13

Presenting BOOSE.INTIUSIVE CONAINETSuuuu ittt ettt e et ettt e et e e et b e e e ae s 13

T - 10T TP 14
Features Of the SAfE MOTE e et e et e et e e e eenaas 14
Configuring SAfE-MOGE BSSEITIONSuut ittt ettt ettt ettt ettt ettt ettt et e e e eenen s 15

F AN 1 (o T[] 1T 0] 1T o] & PRSP 15
What's an auto-UNTINK NOOK? ... e et e e et e e e e e eanns 15
AULO-UNTINK NOOK BXAMPIE ...t ettt ettt e ettt e e e e eaaens 16
Auto-unlink hooks and containers with constant-time STZE() «..vuevvrriiiiniii e 17

INtrusive SINGLY HNKEA TISE: SIIST ... e ettt eaees 18
SISE OOKS .ttt e e e et et et ettt e e e e 18
K [oo U T PR 18
L 1] [P P TR PPPPTRUPPPPTN 19

Intrusive doUBIY TINKEd TISE: TIST e e e e et et et e e ettt e e et e eeena e aenes 20
JISE NOOKS . e e e e e e et et e a e e eas 20
LTS o] 1 7=V 1 PR 20
L 1 1]0] [P P TR UPPPPTRUPPPPTN 21

Intrusive associative CoNtainers: Set, MUITISEL, MOIIEEo e 22
Set, MUILISEL AN TDEIEE NOOKS ... v ittt e e eas 22
Set, MUILISEL AN FDIrEE CONTAINEIS .. v ittt ettt et e et ettt ettt e e e e et et et e et e e e e aeaans 23
L 1 1]0] [P P TR UPPPPTRUPPPPTN 23

Semi-Intrusive unordered associative containers: unordered_set, unordered_MUItiSetcoooiiiiiiiiiiiii e 25
unordered_set and unordered_multiset PerformanCe NOTESciuu i e 25
unordered_set and unordered_MUItISEt NOOKSiieeiiii e 25
unordered_set and unordered_MUILISEt CONTAINETS iiuniiii e e e e e e e e e e ean e 26
L 1 1]0] [P P TR UPPPPTRUPPPPTN 28
(OF013 (o] I 01U oG] B - V) S ST 29

Intrusive splay tree based associative containers: splay_set, splay_multiset and , splay_treecccoooeviiiiiiiiiniiiiinnecennn, 31
Advantages and disadvantages of splay tree based CONTAINETSiiiiiiiiiii e 31
splay_set, splay_multiset and SPIAYLIEE NOOKSui it 31

1

http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.Intrusive

splay_set, splay_multiset and SPIAYIrEe CONTAINETScivuiiiii it e e e e e e e e e e et e e et eaanas 32
Splay trees With BST NOOKSiiiiiiiii e e e e e e e e e e et e e et e e e e aaa s 32
T 101 0] L 32
Intrusive avl tree based associative containers: avl_set, avl_multiset and avltreec.coiiiiiiiiii i, 34
avl_set, avl_multiset and aVITrEe NOOKSuiiiiiiii e e 34
avl_set, avl_multiset and aVIIrEE CONTAINEISiiuieii it et e et e aan e eaaenas 35
T 101 0] L 35
Intrusive scapegoat tree based associative containers: sg_set, Sg_multiset and SOIrE.ccvvviiiiiiiiiiieiiii e, 37
Using binary search tree hooks: bs_set_base_hook and bs_set_member_hooKcccoviiiiiiiniiiiii e, 37
Sg_set, Sg_Multiset and SOIrEE CONLAINETSiiit it e et e e e e e e e e e e et e e et e e et e e et e e et e aanaeenes 38
T .01 0] L 38
Intrusive treap based associative containers: treap_set, treap_multiset and treapc.cooiiiiiiiiiiiiiii e, 40
Using binary search tree hooks: bs_set_base_hook and bs_set_ member_hooKcccoveiiiiiiiniiiiii e, 40
treap_set, treap_multiset and treap CONTAINETSiiit i e e e e e e e e e e e et e et e e e e aaaaas 41
Exception safety of treap-based iNtruSIVE CONTAINETSuiiiii e e e e e e e e e e e e e aan s 42
T .01 0] L 42
Advanced lookup and insertion functions for assOCIative CONTAINETScuuuiiiiiieiiiee e e e e 44
Ao AV L aTor=To I [T (U o 44
YA AV g or=To BT g1t g o] PR 47
oY Lo g T =T o] o PR 48
Erasing and disposing values from Boost.INtrUSIVE CONTAINETSoiiuiiii e e e e e e e e e e e e e e e 50
Cloning BOOSE. INTrUSIVE CONTAINESivuuiiiieei e et et e e e et e e e e et e e e e et e e et e et e e et e e st e e et e e et e e e e e et e e et e ernneaaenas 52
L0 T 0T g Tod 1 o N a0 o] 54
ReCUrsiVe BOOSEINIIUSIVE CONMTAINETS iiiutt ettt e ettt e ettt st e et e et e e et e e et e e e et b e e et bt e e e e bt e e e eben e 56
Using smart pointers With BOOSE. INTIUSIVE CONTAINETSu.iiiiieiiii e e e e e e e e e e e e e e e e e e et e e et eeaaaeees 59
Requirements for smart pointers compatible with BOOSLINITUSIVEccovuiiiiiiiii e 60
ODbtaining ITErators frOM VAIUES ciiiiiii e et e e e e e e e e et e e et e e et e e e et e e e at e e st e e et e eeanearaaee 61
Any Hooks: A single hook for any INtruSIVE CONTAINETccuuiiii it e e e e e e e e e e e e aaeas 63
@00 Tor=T o] £ =21 0] = L1 1Yo PP 64
Node algorithms With CUSTOM NOGETIAILSivu.iiiii i e e e e e e e e e e e et e e et e e et e et eeateeaanaeees 67
Intrusive singly linked list algOrithms e e e e e e e 68
Intrusive doubly liNked it algOrithMSo e e e e e e r e e e e 69
Intrusive red-black tree algOritiMS e e e e e e 71
Intrusive splay tree algOritimMS i e e e 73
INtruSiVe AVl tre8 AlgOrItMS ... i e e e e e e e e e e e e e e 75
INTrUSIVE treap algOtMS ... e i et e e e e e e e e e e e e e et e et e et e e e e e e et e e aa 77
Containers With CUSTOM VAIUETIAILSeeiietieeiiiiee et e e e e e e e e e r e e e et e e e et et e e e e bt e e e e tanaeeeaen s 79
LT (Cl I =T ST g1 =] - Vo PRSPPI 79
CUSTOM ValUBTTAITS EXAMPIE ...ttt e e e e e e e e e e e e et e e et e et e et e e et e e et e e et e esaneeaanaees 80
Reusing node algorithms for different VAIUEScccouiiiiiii e e e e 82
Simplifying value traits defiNitioN e 84
S U LTI LU V1 £SO 85
L= (o T (=LA [V T Ly T 87
Obtaining the same types and reducing Symbol IBNGEN ... 87
[T=T] o A1) PP 88
Boost.Intrusive in performance SeNSIitive ENVIFONMENTSiiuuueeii i e e e e e e e e e e e e e e e e et e e e e aaeeaens 88
Boost.Intrusive in space CONSraiNed BNVIFONIMENTSiiutiiii et et e e e e e e e e e e e e e e et e et e e st e eat e e aan e aanaes 88
Boost.Intrusive as a basic bUuilding DIOCK ... 89
EXIENAING BOOST.INTIUSIVE . ..uu.iiit ittt e e e e e e e e e e e e et e e et e e et e e et e e et e et e eat e eaaneeees 89
PRITOIMANCE ... ittt ettt et e ettt et et et a e e 89
Back iNSErtion @nd GESIIUCTION ... iiiiut ittt e e et e e et e e ettt e e et e e e e ettt e e et 90
Y=Y £ oo 92
ST 1o PPN 94
BT L= oo PP 96
(0703 T6] 1] To] LTSRN 97
REIBASE INOLES ...ttt ettt ettt ettt e ettt e e ettt e e e ettt e e et e e e e et e et e et e e et e e s 97
BOOSE 145 REIBASE ceiiii ettt e ettt 97
BOOSE 1,40 REIBASE eeeeii ettt e ettt aa s 97
2

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Intrusive
BOOSE 1.39 REIBASE ... e eiiei ettt e ettt e aa s 97
BOOSE 1.38 REIBASE eiiei ettt et e ettt 97
BOOSE 1.37 REIBASE ieeeei ettt e ettt an s 98
BOOSE 1.36 REIBASE eeiiiii ettt e ettt 98
QIS o o] 0T o1 LT £ PP 98
L =T =10 [0l PP UUPTRUPPIN 98
Aot 410111 =T o T=T 0 1T o1 (PPN 99
L =T =10 (ol TP RUPTRN 99
Header <boost/intrusive/any hoOK. NPP> ... e 99
Header <boost/iNtrusSiVe/aVl SBL. NP> ... oo 111
Header <boost/intrusive/avl_Set NOOK. PPouiii e e 146
Header <hooSt/iNtrUSIVE/AVITEE. PP .. o i e e e e e e 153
Header <boost/intrusive/avitree_algorithms. PPo 171
Header <boost/intrusive/bs_Set NOOK. NPP™>ooiiii e 182
Header <boost/intrusive/circular_list_algorithms.nNpP> ... 188
Header <boost/intrusive/circular_slist_algorithms.npp>c.ooiiiiiii 192
Header <boost/intrusive/derivation_value _traitS.npP>cooiiiiiiiii 197
Header <boost/intrusive/hashtable. PP e 199
Header <boost/intrusive/linear_slist_algorithms.Npp> ... 217
Header <boost/intrusive/link _MOde. Npp> ... e 221
Header <B0O0StH INtIUSIVE LSt PP oo e e e e e e e e 222
Header <boost/intrusive/list_ NOOK. PP ... 238
Header <boost/intrusive/member_value traitS. PPoiiii 244
Header <booSt/INtrUSIVE/OPTIONS. PP ... e e e e e e e e aaes 246
Header <boost/intrusive/parent_from_MembErpp> ... 270
Header <boost/intrusive/pointer_plus_bits.Npp>oiini i 272
Header <boost/intrusive/priority COMParE. PP ..ovu e e e r e e eaees 275
Header <booSt/INtrUSIVE/TtIEE. NP> ... 276
Header <boost/intrusive/rbtree_algorithms. NpP> ..o 294
Header <DO0SH INITUSIVE Bt NP> .. e e e et e 305
Header <boost/iNtrusiVe/SEt NOOK. PP ... ou e e 340
Header <ho0St/INtrUSIVE/Sg Bt PP .o e 347
Header <ho0SH INITUSIVE SOIIEE. NP> ..o e i e e e e e e e e e e e e e 384
Header <boost/intrusive/sgtree_algorithms. NP> ... i 403
Header <ho0St/INtrUSIVE/SIIST. PP ... e i e e 415
Header <boost/intrusive/slist_ NOOK.NPP>ii e 437
Header <boost/iNtrusSiVe/Splay St P> ... e 444
Header <boost/intrusive/splay_Set hOOK.NPP> ... oo e 480
Header <hoost/iNtrUSIVE/SPIaYtrEE. PP ... ot 487
Header <boost/intrusive/splaytree_algorithms. Npp= 506
.. 517
.. 536
... 548
.. 587
.. 589
... 622

Header <boost/intrusive/treap.hpp>

Header <boost/intrusive/treap_algorithms.hpp>
Header <boost/intrusive/treap_set.hpp>

Header <boost/intrusive/trivial_value_traits.hpp>

Header <boost/intrusive/unordered_set.hpp>
Header <boost/intrusive/unordered_set_hook.hpp>
Boost.Intrusive is a library presenting some intrusive containers to the world of C++. Intrusive containers are special containers

http://www.renderx.com/

Introduction
Presenting Boost.Intrusive

that offer better performance and exception safety guarantees than non-intrusive containers (like STL containers).
like multi-index containers or to design high performance code like memory allocation algorithms.

The performance benefits of intrusive containers makes them ideal as a building block to efficiently construct complex containers

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.Intrusive

While intrusive containers were and are widely used in C, they became more and more forgotten in C++ due to the presence of the
standard containers which don't support intrusive techniques.Boost. Intrusive not only reintroduces this technique to C++, but also
encapsulates the implementation in STL-like interfaces. Hence anyone familiar with standard containers can easily use Boost.Intrusive.

Building Boost.Intrusive

There is no need to compile anything to use Boost.Intrusive, since it's a header only library. Just include your Boost header directory
in your compiler include path.

Intrusive and non-intrusive containers

Differences between intrusive and non-intrusive containers

The main difference between intrusive containers and non-intrusive containers is that in C++ non-intrusive containers store copies
of values passed by the user. Containers use the Al locator template parameter to allocate the stored values:

#include <list>
#include <assert.h>

int main()

{
std: :list<MyClass> myclass_list;
MyClass myclass(...);
myclass_list._push_back(myclass);
//The stored object is different from the original object
assert(&myclass = &myclass_list._front());
return O;
by

To store the newly allocated copy of myclass, the container needs additional data: std: - list usually allocates nodes that contain
pointers to the next and previous node and the value itself. Something similar to:

//A possible implementation of a std::list<MyClass> node
class list_node

{
list_node *next;
list_node *previous;
MyClass value;

}:

On the other hand, an intrusive container does not store copies of passed objects, but it stores the objects themselves. The additional
data needed to insert the object in the container must be provided by the object itself. For example, to insert MyClass in an intrusive
container that implements a linked list, MyClass must contain the needed next and previous pointers:

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Intrusive

class MyClass
MyClass *next;
MyClass *previous;
//0ther members. ..

{

}:
int main()
acme_intrusive_list<MyClass> list;

{

MyClass myclass;
list.push_back(myclass);

//"myclass" object is stored in the list
&list.front());
As we can see, knowing which additional data the class should contain is not an easy task. Boost.Intrusive offers several intrusive

assert(&myclass
return O;
containers and an easy way to make user classes compatible with those containers.
Properties of Boost.Intrusive containers
Semantically, a Boost.Intrusive container is similar to a STL container holding pointers to objects. That is, if you have an intrusive
list holding objects of type T, then std: : 1ist<T*> would allow you to do quite the same operations (maintaining and navigating

A non-intrusive container has some limitations:

An object can only belong to one container: If you want to share an object between two containers, you either have to store multiple

a set of objects of type T and types derived from it).
copies of those objects or you need to use containers of pointers: std: : list<Object*>.
The use of dynamic allocation to create copies of passed values can be a performance and size bottleneck in some applications.
Normally, dynamic allocation imposes a size overhead for each allocation to store bookkeeping information and a synchronization

to protected concurrent allocation from different threads.

Only copies of objects are stored in non-intrusive containers. Hence copy or move constructors and copy or move assignment
It's not possible to store a derived object in a STL-container while retaining its original type.

operators are required. Non-copyable and non-movable objects can't be stored in non-intrusive containers.

Operating with intrusive containers doesn't invoke any memory management at all. The time and size overhead associated with

dynamic memory can be minimized.

Iterating an Intrusive container needs less memory accesses than the semantically equivalent container of pointers: iteration is
a no-throw guarantee that can't be achieved with non-intrusive containers.
Intrusive containers offer predictability when inserting and erasing objects since no memory management is done with intrusive

Intrusive containers have some important advantages:
L]
faster.
Intrusive containers offer better exception guarantees than non-intrusive containers. In some situations intrusive containers offer

The computation of an iterator to an element from a pointer or reference to that element is a constant time operation (computing
http://www.renderx.com/

the position of T* in a std: : List<T*> has linear complexity).
containers. Memory management usually is not a predictable operation so complexity guarantees from non-intrusive containers

are looser than the guarantees offered by intrusive containers.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Intrusive

Intrusive containers have also downsides:
Each type stored in an intrusive container needs additional memory holding the maintenance information needed by the container.

Hence, whenever a certain type will be stored in an intrusive container you have to change the definition of that type appropriately.
Although this task is easy with Boost.Intrusive, touching the definition of a type is sometimes a crucial issue.
In intrusive containers you don't store a copy of an object, but rather the original object is linked with other objects in the

container. Objects don't need copy-constructors or assignment operators to be stored in intrusive containers. But you have to take
care of possible side effects, whenever you change the contents of an object (this is especially important for associative containers).

Internal through allocator

Again you have to be careful: in contrast to STL containers it's easy to render an iterator invalid without touching the intrusive

container directly, because the object can be disposed before is erased from the container.

Slower

The user has to manage the lifetime of inserted objects independently from the containers.
Boost.Intrusive containers are non-copyable and non-assignable. Since intrusive containers don't have allocation capabilities,
these operations make no sense. However, swapping can be used to implement move capabilities. To ease the implementation of
Intrusive

copy constructors and assignment operators of classes storing Boost.Intrusive containers, Boost.Intrusive offers special cloning

functions. See Cloning Boost.Intrusive containers section for more information.

Analyzing the thread safety of a program that uses containers is harder with intrusive containers, because the container might be
Non-intrusive
Faster
No

modified indirectly without an explicit call to a container member.
Table 1. Summary of intrusive containers advantages and disadvantages
External
Worse

Issue
Memory management
Insertion/Erasure time
Memory locality Better
Can hold non-copyable and non-movable objects by value Yes
Exception guarantees Better Worse
Constant Non-constant
High Low
Minimal More than minimal
Yes No (slicing)
Yes No
Yes
Container (less complex)
Harder (only with containers of pointers)

Computation of iterator from value
Easier

Insertion/erasure predictability
No
User (more complex)

Easier

Insert objects by value retaining polymorphic behavior
Harder

Memory use
User must modify the definition of the values to insert

Containers are copyable
Inserted object's lifetime managed by
Container invariants can be broken without using the container
For a performance comparison between Intrusive and Non-intrusive containers see Performance section.
http://www.renderx.com/

Thread-safety analysis

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Intrusive

How to use Boost.Intrusive

If you plan to insert a class in an intrusive container, you have to make some decisions influencing the class definition itself. Each
Boost.Intrusive containers are very similar. To compile the example using boost: : intrusive: : list, just include:

class that will be used in an intrusive container needs some appropriate data members storing the information needed by the container.
We will take a simple intrusive container, the intrusive list (boost: :intrusive::list), for the following examples, but all

#include <boost/intrusive/list._hpp>
Every class to be inserted in an intrusive container, needs to contain a hook that will offer the necessary data and resources to be

insertable in the container. With Boost.Intrusive you just choose the hook to be a public base class or a public member of the class
to be inserted. Boost.Intrusive also offers more flexible hooks for advanced users, as explained in the chapter Using function hooks,

but usually base or member hooks are good enough for most users.

Using base hooks
. .Options>

For list, you can publicly derive from list_base_hook.
template <class
class list_base_hook;
can specify the following options:
I i nk_node<l i nk_node_t ype Li nkMbde>: The second template argument controls the linking policy. Boost.Intrusive currently
supports 3 modes: normal_link, safe_link and auto_unlink. By default, safe_link mode is used. More about these in

sections Safe hooks and Auto-unlink hooks. Example: list_base_hook< link_mode<auto_unlink> >
voi d_poi nter <cl ass Voi dPoi nt er >: this option is the pointer type to be used internally in the hook. The default value is

The class can take several options. Boost.Intrusive classes receive arguments in the form option_name<option_value>. You
void *, which means that raw pointers will be used in the hook. More about this in the section titled Using smart pointers with

» tag<cl ass Tag>: thisargument serves as a tag, so you can derive from more than one list_base_hook and hence put an object

in multiple intrusive lists at the same time. An incomplete type can serve as a tag. If you specify two base hooks, you must specify
a different tag for each one. Example: list_base_hook< tag<tagl> >. If no tag is specified a default one will be used (more

on default tags later).
Boost.Intrusive containers. Example: list_base_hook< void_pointer< my_smart_ptr<void> >

For the following examples, let's forget the options and use the default values:
using namespace boost::intrusive;

#include <boost/intrusive/list._hpp>
class Foo
//Base hook with default tag, raw pointers and safe_link mode

public list_base_hook<>

. .Options>

{ /**/ };
After that, we can define the intrusive list:
http://www.renderx.com/

template <class T, class
7

class list;
list receives the type to be inserted in the container (T) as the first parameter and optionally, the user can specify options. We have

3 option types:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Intrusive

base_hook<cl ass Hook>/nenber hook<cl ass T, class Hook, Hook T::* PtrToMenber>/val ue_traits<cl ass

Val ueTr ai t s>: All these options specify the relationship between the type T to be inserted in the list and the hook (since we can
have several hooks in the same T type). member_hook will be explained a bit later and value_traits will be explained in the

Containers with custom ValueTraits section. If no option is specified, the container will be configured to use the base hook
with the default tag. Some options configured for the hook (the type of the pointers, link mode, etc.) will be propagated to the
Enabl ed>: Specifies if a constant time size () function is demanded for the container. This will

container.
constant _ti me_si ze<bool
instruct the intrusive container to store an additional member to keep track of the current size of the container. By default, constant-
Enabl ed>: Specifies a type that can hold the size of the container. This type will be the type returned by
list._size() and the type stored in the intrusive container if constant_time_size<true> is requested. The user normally

will not need to change this type, but some containers can have a size_type that might be different from std: :size_t (for

time size is activated.

si ze_t ype<boo
example, STL-like containers use the size_type defined by their allocator). Boost.Intrusive can be used to implement such
Example of a constant-time size intrusive list that will store Foo objects, using the base hook with the default tag:

containers specifying the the type of the size. By default the type is std: :size_t

typedef list<Foo> FoolList;

Example of a intrusive list with non constant-time size that will store Foo objects:
typedef list<Foo, constant_time_size<false> > FoolList;

Remember that the user must specify the base hook if the base hook has no default tag (e.g: if more than one base hook is used):

#include <boost/intrusive/list._hpp>

using namespace boost::intrusive;

struct my_tag;
typedef list_base hook< tag<my_tag> > BaseHook;

: public BaseHook
typedef list< Foo, base_ hook<BaseHook> > FooList;

class Foo
{ /**/ };

Once the list is defined, we can use it:
//An object to be inserted in the list

Foo foo_object;

FooList list;

list._push_back(object);

assert(&list.front() ==

Sometimes an 'is-a' relationship between list hooks and the list value types is not desirable. In this case, using a member hook as a
to your class. This class can be configured with the same options as 1ist_base_hook except the option tag:

Using member hooks

&Foo_object) ;
data member instead of 'disturbing’ the hierarchy might be the right way: you can add a public data member Iist_member_hook<. . .>
http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.Intrusive

template <class ...Options>
class list_member_hook;

Example:

#include <boost/intrusive/list_hpp>

class Foo

{
public:
list_member_hook<> hook_;
//. ..

¥

When member hooks are used, the member_hook option is used to configure the list:

//This option will configure "list" to use the member hook
typedef member_hook<Foo, list_member_hook<>, &Foo::hook_> MemberHookOption;

//This list will use the member hook
typedef list<Foo, MemberHookOption> FooList;

Now we can use the container:

//An object to be inserted in the list
Foo foo_object;

FooList list;

list.push_back(object);

assert(&list_front() == &foo_object);

Using both hooks

You can insert the same object in several intrusive containers at the same time, using one hook per container. This is a full example

using base and member hooks:

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Intrusive

#include <boost/intrusive/list._hpp>
#include <vector>

using namespace boost::intrusive;

class MyClass : public list_base_hook<>

{

}

int int_;

public:
list_member_hook<> member_hook_;

MyClass(int i) : int (i) {}

//Define a list that will store MyClass using the base hook
typedef list<MyClass> BaselList;

//Define a list that will store MyClass using the member hook
typedef member_hook

< MyClass, list_member_hook<>, &MyClass::member_hook > MemberOption;

typedef list<MyClass, MemberOption> MemberList;

int main()

{

typedef std::vector<MyClass>::iterator Vectlt;
typedef std::vector<MyClass>::reverse_iterator VectRit;

//Create several MyClass objects, each one with a different value
std: :vector<MyClass> values;
for(int i = 0; 1 < 100; ++i) values.push_back(MyClass(i));

BaseList baselist;
MemberList memberlist;

//Now insert them in the reverse order in the base hook list
for(Vectlt it(values._begin()), itend(values.end())

; it 1= itend ; ++it){

baselist.push_front(*it);
hs

//Now insert them in the same order as in vector in the member hook list
for(Vectlt it(values.begin()), itend(values.end()); it != itend; ++it)
memberlist.push_back(*it);

//Now test lists

{
BaseList::reverse_iterator rbit(baselist.rbegin()), rbitend(baselist.rend());
MemberList: - iterator mit(memberlist.begin()), mitend(memberlist.end());
Vectlt it(values.begin()), itend(values.end());

//Test the objects inserted in the base hook list
for(; it != itend; ++it, ++rbit)
if(&*rbit = &*it) return 1;

//Test the objects inserted in the member hook list

3
i

10

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Intrusive

it = itend; ++it, ++mit)

return 1;

for(it = values.begin();
if(&*mit 1= &*it)

}

return O;
» When the object is destroyed before the container, your program is likely to crash, because the container contains a pointer to an

be
Object lifetime

Even if the interface of Iist is similar to std: : list, its usage is a bit different; You always have to keep in mind that you directly

store objects in intrusive containers, not copies. The lifetime of a stored object is not bound to or managed by the container:
» When the container gets destroyed before the object, the object is not destroyed, so you have to be careful to avoid resource leaks.

non-existing object.

When to use?

Intrusive containers can be used for highly optimized algorithms, where speed is a crucial issue and:
the programmer needs to efficiently track the construction and destruction of objects.
the computation of an iterator to an element from a pointer or reference to that element should be a constant time operation.

« additional memory management should be avoided.

exception safety, especially the no-throw guarantee, is needed.
it's important to achieve a well-known worst-time system response.
localization of data (e.g. for cache hit optimization) leads to measurable effects.
The last point is important if you have a lot of containers over a set of elements. E.g. if you have a vector of objects (say,
std: :vector<Object>), and you also have a list storing a subset of those objects (std: : Iist<Object*>>), then operating on an
Obiject from the list iterator (std: : list<Object*>: :iterator) requires two steps:
» Access from the iterator (usually on the stack) to the list node storing a pointer to Object.

» Access from the pointer to Object to the Object stored in the vector.

While the objects themselves are tightly packed in the memory of the vector (a vector's memory is guaranteed to be contiguous),
It's also possible to use intrusive containers when the objects to be stored can have different or unknown size. This allows storing

and form something like a data block, list nodes may be dispersed in the heap memory. Hence depending on your system you might
get a lot of cache misses. The same doesn't hold for an intrusive list. Indeed, dereferencing an iterator from an intrusive list is performed
in the same two steps as described above. But the list node is already embedded in the Object, so the memory is directly tracked

from the iterator to the Object.
base and derived objects in the same container, as shown in the following example:

http://www.renderx.com/

11

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Intrusive

#include <boost/intrusive/list._hpp>
using namespace boost::intrusive;

//An abstract class that can be inserted in an intrusive list

class Window : public list_base_hook<>

{
public:
//This is a container those value is an abstract class: you can"t do this with std::list.
typedef list<Window> win_list;

//A static intrusive list declaration
static win_list all_windows;

//Constructor. Includes this window in the list

Window() { all_windows.push_back(*this); 7}

//Destructor. Removes this node from the list

virtual ~Window() { all_windows.erase(win_list::s_iterator_to(*this)); 7}
//Pure virtual function to be implemented by derived classes

virtual void Paint() = 0;

¥

//The static intrusive list declaration
Window: :win_list Window::all_windows;

//Some Window derived classes
class FrameWindow : public Window
{ wvoid PaintQO{/**/} };

class EditWindow : public Window
{ void PaintQ{/**/} };

class CanvasWindow : public Window
{ void PaintQ{/**/} };

//A Tunction that prints all windows stored in the intrusive list
void paint_all_windows()

{
for(Window: :win_list::iterator i(Window::all_windows.begin())
, e(Window: :all_windows.end())

;1 I= e; ++i)
i->Paint();

}

//. ..

//A class derived from Window

class MainWindow : public Window

{

FrameWindow frame_; //these are derived from Window too
EditWindow edit_;
CanvasWindow canvas_;

public:
void Paint(O){/**/}
//. ..

};

//Main function

int main()

{
//When a Window class is created, is automatically registered in the global list
MainWindow window;

3
i

12

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Intrusive

//Paint all the windows, sub-windows and so on
paint_all_windows();
//Al1l the windows are automatically unregistered in their destructors.

Due to certain properties of intrusive containers they are often more difficult to use than their STL-counterparts. That's why you
should avoid them in public interfaces of libraries. Classes to be stored in intrusive containers must change their implementation to

return O;

store the hook and this is not always possible or desirable.

A class containing typedefs and static functions that define basic operations that can be applied
to a group of nodes. It's independent from the node definition and configured using a NodeTraits

Concept summary

Here is a small summary of the basic concepts that will be used in the following chapters:
template parameter that describes the node.

A class that stores basic information and operations to insert a node into a group of nodes.

Brief Concepts Summary
A class that a user must add as a base class or as a member to make the user class compatible

A class that stores user classes that have the needed hooks. It takes a ValueTraits template

Similar to an intrusive container but a semi-intrusive container needs additional memory (e.g.

Node Algorithms
Node Traits
Hook
with intrusive containers.
Intrusive Container
parameter as configuration information.
an auxiliary array) to work.
A class containing typedefs and operations to obtain the node to be used by Node Algorithms
from the user class and the inverse.

Value Traits

Boost.Intrusive offers a wide range of intrusive containers:

set/multiset/rbtree: std: :set/std: :mul tiset like intrusive associative containers based on red-black trees. The size overhead
is moderate for user classes (usually the size of three pointers). Many operations have logarithmic time complexity.

Semi-Intrusive Container
Presenting Boost.Intrusive containers
slist: An intrusive singly linked list. The size overhead is very small for user classes (usually the size of one pointer) but many

operations have linear time complexity, so the user must be careful if he wants to avoid performance problems.
list: A std: : list like intrusive linked list. The size overhead is quite small for user classes (usually the size of two pointers).

Many operations have constant time complexity.
avl_set/avl_multiset/avltree: A std: :set/std: :multiset like intrusive associative containers based on AVL trees. The size

http://www.renderx.com/

13

overhead is moderate for user classes (usually the size of three pointers). Many operations have logarithmic time complexity.
splay_set/splay_multiset/splaytree: std: :set/std: :-mul tiset like intrusive associative containers based on splay trees. Splay
trees have no constant operations, but they have some interesting caching properties. The size overhead is moderate for user classes

(usually the size of three pointers). Many operations have logarithmic time complexity.
sg_set/sg_multiset/sgtree: A std::set/std::multiset like intrusive associative containers based on scapegoat trees.
Scapegoat can be configured with the desired balance factor to achieve the desired rebalancing frequency/search time compromise.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.Intrusive

The size overhead is moderate for user classes (usually the size of three pointers). Many operations have logarithmic time com-
plexity.
Boost.Intrusive also offers semi-intrusive containers:

» unordered_set/unordered_multiset: std: :trl::unordered_set/std::trl::unordered_multiset like intrusive unordered
associative containers. The size overhead is moderate for user classes (an average of two pointers per element). Many operations

have amortized constant time complexity.
Most of these intrusive containers can be configured with constant or linear time size:

Linear time size: The intrusive container doesn't hold a size member that is updated with every in